地震和臺風作用下多塔斜拉橋橫向結(jié)構(gòu)體系綜合控制方法
[Abstract]:The response of typhoon to transverse structure earthquake of multi-tower cable-stayed bridge is more complex. In the transverse direction of cable-stayed bridge, wind support is generally used to restrict the relative motion of the main beam and the cable tower. This kind of "rigid" constraint system usually makes the transverse bridge of cable-stayed bridge seismic and typhoon response is large. In this paper, based on the engineering background of Jiashao Bridge, the characteristics of earthquake and typhoon response of different transverse structure systems are analyzed and studied, and several groups of passive shock absorption (vibration) control methods are proposed and compared under the transverse fully free system. Finally, the optimal damping (vibration) scheme is given by using the response surface method and nonlinear constrained optimization algorithm. The main work and achievements of this paper are as follows: 1. Based on Ansys software platform, the finite element model of Jiaxao Bridge is established, and the response characteristics of finite element models of different transverse structure systems under earthquake and typhoon are analyzed. The results show that: (1) the transverse displacement response of the main beam of the transverse free system under earthquake is larger, while the transverse internal force response of the bottom of the tower and the transverse displacement response of the top of the tower are small; The transverse internal force response and the transverse displacement response of the tower top of the transverse fully consolidated system are larger, while the transverse displacement response of the main beam is smaller. (2) the transverse internal force of the bottom of the transverse fully free system is larger and the transverse displacement of the main beam is also larger under the action of typhoon. However, the transverse shear force at the bottom of the tower is smaller. The transverse shear force at the bottom of the tower is larger, while the transverse internal force at the bottom of the pier and the transverse displacement of the main beam are smaller. In addition, the transverse connection mode of tower beam has little effect on wind-induced vibration response such as transverse bending moment of tower bottom and transverse displacement of tower top. A corresponding damping (vibration) scheme is proposed for the transverse fully free system, and the damping (vibration) effects of different damping schemes are analyzed and compared. The results show that: (1) the transverse displacement response of the main beam can be significantly reduced by setting elastic cables or viscous fluid dampers between the tower beams under earthquake, but the transverse internal force at the bottom of the tower and the transverse displacement at the top of the tower can be magnified to a certain extent. The damping effect of viscous dampers is better than that of elastic cables. (2) both viscous dampers and elastic cables under typhoon can significantly reduce the transverse internal force response of auxiliary piers and the transverse displacement response of main beams. In addition, viscous dampers can effectively reduce the transverse internal force response at the bottom of the tower and the transverse displacement response at the top of the tower. Good control effect can be obtained by setting reasonable device parameters in shock absorption (vibration) scheme. In order to further control the transverse displacement of the main beam under the action of typhoon, the two devices can work together and achieve better control effect by using the joint control scheme of elastic cable viscous fluid dampers. The response surface method and nonlinear constrained optimization algorithm are used to optimize the shock absorption (vibration) scheme of transverse structure system under the action of earthquake and typhoon. The analysis results show that the effect of shock absorption (vibration) response surface fitted by response surface method is ideal and can be used in the optimal design of earthquake and typhoon response control. The nonlinear constrained optimization algorithm is used to optimize the damping (vibration) scheme, and the optimization results are obtained. According to the earthquake and typhoon response characteristics and control objectives of multi-tower cable-stayed bridge, the control scheme is adjusted and improved, which can effectively control the seismic and typhoon response of the transverse structure system of multi-tower cable-stayed bridge at the same time. The comprehensive control method of transverse structure system of multi-tower cable-stayed bridge under earthquake and typhoon is obtained.
【學位授予單位】:東南大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:U448.27
【相似文獻】
相關(guān)期刊論文 前10條
1 鄭春,劉曉東;論多塔斜拉橋的剛度[J];公路;2002年06期
2 喻梅;淺談多塔斜拉橋[J];四川建筑;2003年03期
3 喻梅,李喬;結(jié)構(gòu)布置對多塔斜拉橋力學行為的影響[J];橋梁建設(shè);2004年02期
4 ;墩高245m的法國米約多塔斜拉橋[J];鐵道建筑;2004年09期
5 金立新;郭慧乾;;多塔斜拉橋發(fā)展綜述[J];公路;2010年07期
6 喻梅;李喬;廖海黎;;多塔斜拉橋的剛度配置[J];四川建筑科學研究;2010年04期
7 張廣山;祝江林;;多塔斜拉橋設(shè)計方案研究[J];建筑;2011年04期
8 曹珊珊;雷俊卿;李忠三;林道錦;王仁貴;;多塔斜拉橋剛度分析[J];世界橋梁;2012年01期
9 林道錦;李忠三;王仁貴;;多塔斜拉橋力學性能研究[J];公路;2013年07期
10 胡建華,廖建宏;多塔斜拉橋關(guān)鍵技術(shù)研究[J];中外公路;2002年03期
相關(guān)會議論文 前4條
1 陳明憲;;多塔斜拉橋關(guān)鍵技術(shù)研究[A];第一屆全國公路科技創(chuàng)新高層論壇論文集公路設(shè)計與施工卷[C];2002年
2 廖建宏;胡建華;;Ⅲ 結(jié)構(gòu)分析和試驗研究 岳陽洞庭湖大橋多塔斜拉橋新技術(shù)研究[A];中國公路學會橋梁和結(jié)構(gòu)工程學會2002年全國橋梁學術(shù)會議論文集[C];2002年
3 房貞政;張超;陳永健;鄭則群;許莉;;基于三臺陣振動臺的多塔斜拉橋試驗研究[A];第六屆全國防震減災(zāi)工程學術(shù)研討會論文集(Ⅰ)[C];2012年
4 張顯杰;楊江國;楊冬云;李會東;;新三條石橋橋型景觀及結(jié)構(gòu)設(shè)計[A];第十八屆全國橋梁學術(shù)會議論文集(上冊)[C];2008年
相關(guān)重要報紙文章 前6條
1 馮源 袁云;世界上最長最寬的多塔斜拉橋開工[N];大眾科技報;2008年
2 記者 康行遠 通訊員 高惠群;嘉紹大橋挑戰(zhàn)兩項世界紀錄[N];嘉興日報;2009年
3 記者 張陸龍 通訊員 李蘇;攻克多個世界建橋難題 推動橋梁建設(shè)科技進步[N];紹興日報;2013年
4 宋文健 嚴林征;羅霄山中起高塔[N];中國交通報;2013年
5 姚鋒;李傳習:提出大跨度橋梁結(jié)構(gòu)計算新理論[N];中國交通報;2003年
6 本報記者 楊海濤 王緣 通訊員 李蘇;嘉紹大橋:從中國制造到中國創(chuàng)造的有力轉(zhuǎn)身[N];中國交通報;2013年
相關(guān)博士學位論文 前2條
1 孫才志;大跨度多塔斜拉橋隨機地震響應(yīng)分析及應(yīng)用研究[D];西南交通大學;2014年
2 李忠三;基于靜動力特性的多塔長跨斜拉橋結(jié)構(gòu)體系剛度研究[D];北京交通大學;2014年
相關(guān)碩士學位論文 前10條
1 周偉平;大跨度多塔斜拉橋主梁隨機地震可靠性分析[D];西南交通大學;2015年
2 應(yīng)衛(wèi)超;大跨度多塔斜拉橋伸縮傳力裝置適用性研究[D];西南交通大學;2015年
3 陳子濤;多塔斜拉橋拉索面內(nèi)外振動理論及有限元分析[D];長安大學;2015年
4 韓帥;基于結(jié)構(gòu)健康監(jiān)測數(shù)據(jù)的多塔斜拉橋剛性鉸研究[D];哈爾濱工業(yè)大學;2015年
5 黃勝;部分預應(yīng)力混凝土梁在高墩多塔斜拉橋上的應(yīng)用研究[D];長沙理工大學;2014年
6 田靜靜;地震和臺風作用下多塔斜拉橋橫向結(jié)構(gòu)體系綜合控制方法[D];東南大學;2015年
7 李鵬程;多塔斜拉橋剛度分析[D];重慶交通大學;2009年
8 喻梅;多塔斜拉橋結(jié)構(gòu)特性分析[D];西南交通大學;2003年
9 廖龍輝;大跨度多塔斜拉橋施工控制關(guān)鍵問題研究[D];長沙理工大學;2011年
10 曹珊珊;多塔斜拉橋的剛度參數(shù)分析與安全性研究[D];北京交通大學;2012年
,本文編號:2476312
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2476312.html