鋼板-橡膠混凝土復(fù)合覆層應(yīng)用于橋墩防撞的研究
[Abstract]:With the development of economy and the progress of science and technology, beam bridge has been used more and more widely. As the substructure of the bridge, the pier not only bears the weight of the structure and the load of the vehicle, but also bears the risk of the impact of the vehicle at all times, therefore, the bridge pier is the substructure of the bridge. It is of great significance to study its response under impact load and anti-collision countermeasures. In this paper, Waveform steel plate rubber concrete, flat steel plate rubber concrete and rubber concrete are used as anti-collision layer of bridge pier. The impact force and dynamic response of the model piers of different cladding types are tested by hammer-impact method and pendulum test. Furthermore, the actual anti-collision effect of three types of coating is demonstrated. In addition, the modal strain energy principle and the finite element software ABAQUS/Explicit are used to calculate the additional damping ratio of the first-order vibration modes provided by three different types of layers for the model pier, and the finite element software ABAQUS/Explicit is used to calculate the additional damping ratio of the first-order vibration modes. The feasibility of the finite element software to simulate the collision problem is verified. Based on the above research contents, the following conclusions can be drawn: (1) for the corrugated steel sheet rubber concrete model pier, the flat steel plate rubber concrete model pier and the rubber concrete clad model pier, with the increase of pendulum height, (2) when the falling height of pendulum is the same, the top displacement response of rubber-concrete covered pier is the largest, followed by flat steel plate rubber-concrete covered pier. The displacement response of the pier with corrugated steel plate rubber-concrete is the smallest. (3) the peak impact force of the model pier with different types of cladding is different, because of the local deformation of corrugated steel plate rubber-concrete piers, the effect of wave-shaped steel plate rubber-concrete cladding piers is the least. The impact force can be effectively prevented from growing too fast. (4) Waveform steel plate rubber concrete coating and steel plate rubber concrete coating are controlled by the local plastic deformation energy dissipation of the outer steel plate and the energy absorption of the inner layer rubber concrete to control the strain of the pier body. When the deformation of the outer plate is not stable, the local deformation energy dissipation of the steel plate is dominant, but when the local deformation of the outer plate is fully developed, the energy dissipation of the local deformation of the steel plate is dominant. (5) the maximum strain, displacement of pier top, impact point and acceleration of pier top obtained by finite element simulation are in agreement with the trend of test value, and the numerical value is slightly larger. It can be considered that the finite element software ABAQUS used in this paper is feasible to calculate the dynamic response of piers under impact load, and it is considered from the point of view of ensuring the safety of pier structure. The finite element calculation results are conservative. (6) for corrugated steel plate rubber-concrete coating and steel plate rubber-concrete coating, steel plate can not only serve as formwork, but also provide greater lateral stiffness. Especially for the corrugated rubber concrete coating, the vertical ripple increases the mechanical bite force of the inner rubber concrete and the outer steel plate, and the vertical wave plays the role of stiffening rib, and the lateral resistance is better, therefore, the vertical ripple increases the mechanical bite force of the inner rubber concrete and the outer steel plate, so the lateral resistance is better. The combination of corrugated steel plate or flat steel plate with rubber concrete can be used as a composite anti-collision protective layer for bridge piers, and the satisfactory construction and mechanical properties can be obtained.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U444;U443.26
【參考文獻】
相關(guān)期刊論文 前10條
1 趙秋紅;李楠;孫軍浩;;波紋鋼板剪力墻結(jié)構(gòu)的抗側(cè)性能分析[J];天津大學(xué)學(xué)報(自然科學(xué)與工程技術(shù)版);2016年S1期
2 孫寶;孫大剛;李占龍;燕碧娟;王軍;;粘彈結(jié)構(gòu)模態(tài)損耗因子分析的修正模態(tài)應(yīng)變能法[J];兵工學(xué)報;2016年01期
3 田力;馮振寧;;預(yù)應(yīng)力箱型梁橋遭受超高車輛在不同位置撞擊下的動態(tài)響應(yīng)[J];土木工程與管理學(xué)報;2016年01期
4 顧承杰;;橋梁防撞設(shè)計的常用方法探討[J];企業(yè)技術(shù)開發(fā);2015年27期
5 李彰;;摻橡膠粉的路面水泥混凝土微細觀結(jié)構(gòu)改性機理研究[J];石家莊鐵道大學(xué)學(xué)報(自然科學(xué)版);2015年03期
6 張震;連永祥;;我國廢橡膠利用現(xiàn)狀和發(fā)展趨勢淺談[J];科技風(fēng);2015年05期
7 王可良;呂興友;劉延江;劉玲;;橡膠集料混凝土的極限拉伸變形試驗[J];南水北調(diào)與水利科技;2014年06期
8 張志國;禚一;;某橋墩抗撞、防撞措施設(shè)計及分析[J];鐵道工程學(xué)報;2013年12期
9 朱亞迪;盧文良;;小車墩柱撞擊力模型試驗研究[J];振動與沖擊;2013年21期
10 李盛勇;聶建國;劉付鈞;胡紅松;樊健生;邵大成;喻德明;;外包多腔鋼板-混凝土組合剪力墻抗震性能試驗研究[J];土木工程學(xué)報;2013年10期
相關(guān)會議論文 前3條
1 李浩然;薛凱;朱涵;;橡膠混凝土懸臂梁動力和耗能性能研究[A];第十四屆全國現(xiàn)代結(jié)構(gòu)工程學(xué)術(shù)研討會論文集[C];2014年
2 張炎圣;何水濤;陸新征;盧嘯;;不同車型超高車輛撞擊橋梁上部結(jié)構(gòu)荷載計算[A];第七屆全國工程結(jié)構(gòu)安全防護學(xué)術(shù)會議論文集[C];2009年
3 袁小欽;張素俠;劉習(xí)軍;;橋梁減振技術(shù)的發(fā)展現(xiàn)狀和趨勢[A];第十三屆全國非線性振動暨第十屆全國非線性動力學(xué)和運動穩(wěn)定性學(xué)術(shù)會議摘要集[C];2011年
相關(guān)博士學(xué)位論文 前2條
1 崔X鵬;汽車撞擊荷載及其作用下高速列車與橋梁系統(tǒng)動力響應(yīng)與列車運行安全研究[D];北京交通大學(xué);2015年
2 楊林虎;橡膠集料混凝土的微觀解析及其結(jié)構(gòu)理論的探索研究[D];天津大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 張敏強;橡膠混凝土力學(xué)性能及其應(yīng)用于橋墩防撞的試驗研究[D];北京交通大學(xué);2016年
2 陳玉良;橡膠混凝土力學(xué)性能研究[D];湖北工業(yè)大學(xué);2015年
3 李偉龍;橡膠集料混凝土耗能性能的試驗研究及其在橋墩防撞中的應(yīng)用[D];北京交通大學(xué);2015年
4 李超群;汽車撞擊作用下橋墩的受力機理及動力響應(yīng)研究[D];北方工業(yè)大學(xué);2014年
5 徐林楓;車輛撞擊下橋墩的撞擊力和墩身應(yīng)變研究[D];北京交通大學(xué);2014年
6 劉姍;車輛撞擊作用下的橋梁動力響應(yīng)分析[D];昆明理工大學(xué);2013年
7 劉美銘;橋梁事故分析[D];西南交通大學(xué);2013年
8 張秉輝;橋梁減振阻尼材料的性能實驗及分析[D];石家莊鐵道大學(xué);2012年
9 陳貴炫;橡膠混凝土的抗沖擊性能研究[D];廣東工業(yè)大學(xué);2011年
10 周延朝;波形梁護欄碰撞仿真實驗研究[D];重慶交通大學(xué);2009年
,本文編號:2466883
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2466883.html