圓柱橋墩繞流的數(shù)值模擬研究
[Abstract]:The flow around a cylinder has always been the object of many theoretical analyses, experimental studies and numerical simulations. However, due to the complexity of the three-dimensional flow around the cylinder, the understanding of the physical nature of the flow phenomenon is still incomplete. In particular, there is no systematic theoretical study on the relationship between the flow around the cylinder and the scour around the cylindrical piers. In this paper, the characteristics of the flow field around the cylindrical pier and the scour characteristics of the pier are studied by using the numerical simulation software of Flow-3D fluid dynamics, and the relationship between the flow around the cylinder and the scour is explored. In order to provide theoretical basis and new research ideas for the study of flow around cylindrical piers and scour. In this paper, the flow around a single cylindrical pier and the scour of the river bed are simulated by using Flow 3D software, and the distribution of the flow field around the pier and the scour characteristics of the river bed are obtained. The results show that: (1) the two-dimensional flow field of the cylindrical pier is close to the two sides, the velocity of flow decreases due to the influence of the side wall of the tank, and the velocity decreases to zero because of the blocking effect of the pier on the flow in front of the pier. After the pier, the flow field becomes smooth and stable with the increase of the flow. (2) when the initial velocity increases, the range of concentrated flow around the pier in front of the pier decreases and the influence range of wake on the back of the pier increases; 3 when the initial velocity is 37cm/s, the maximum velocity of two-dimensional plane reaches 42.3 cm / s, and the two-dimensional velocity distribution of the other two initial velocity has the same law, in which the maximum velocity is 34.4cm / s and 22.2 cm / s, respectively. The longitudinal velocity is the largest in the three-dimensional velocity component. The other two directions have a smaller velocity component but mainly affect the migration direction of the velocity. In this paper, the characteristics of flow around piers under different arrangement modes of water-bearing piers are simulated and analyzed from the aspects of water flow structure, velocity distribution and scour topography. The results show that 1 two rows of 10 piers are arranged in a straight line with different angles between the axial direction and the direction of water flow, and the results are as follows: 1. The pier close to the upstream affects the water flow structure near the downstream pier. The maximum depth of the pier at 60 擄is located at the front row of pier 2, and the maximum value is 11.27 cm at 7.66 cm,t=6s for t ~ (2) 4s, and the water flow structure of the pier near the downstream pier is affected by the bridge pier near the upstream of the pier at 60 擄. The scour depth increases with the increase of time until the scouring and silting balance is finally reached. (2) when the piers are arranged at 90 擄, the velocity of 1 ~ 5 # cylinder has obvious symmetry, and the scour range in front of the middle 3 # pier is the smallest. At 30 擄arrangement, it is found that the flow velocity in front of 1 # pier is obviously higher than that of the other 4 piers, and there is a trend of decreasing gradually, and the oblique dispersion arrangement reduces the water resistance of the pier, and the scour of a row of piers near the left bank is more serious in the 0 擄arrangement, and the flow velocity in front of the pier is obviously higher than that of the other 4 piers. The scour of 1 # and 5 # piers at 30 擄is more serious than that of other piers, and the scour range in front of 2 # and 4 # piers at 60 擄arrangement is larger than that of other piers. In general, through this experimental study, the flow around the pier is simulated by using Flow 3D software. The results obtained are compared with the actual test results, and the two research methods are successfully combined with numerical simulation and practical experiment. The characteristics of the flow distribution and the scour deformation of the river bed are studied and analyzed, which can be used as a reference for similar research in the future.
【學(xué)位授予單位】:西北農(nóng)林科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:U442.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王強,劉仰韶,鄧桂萍;某受撞擊橋墩工作性能的評估[J];廣東公路交通;2005年03期
2 梁鍇;方理剛;段靚靚;;沖刷對橋墩穩(wěn)定性影響的有限元分析[J];巖土力學(xué);2006年09期
3 張海東;;橋墩附近基坑開挖對橋墩基礎(chǔ)影響的數(shù)值分析[J];山西建筑;2011年27期
4 高銀水;;淺談斜坡橋墩設(shè)計[J];今日科苑;2007年24期
5 謝壽平;;臨近輸油管道橋墩基礎(chǔ)開挖爆破方案探討[J];中國科技信息;2008年20期
6 孫兆強;向秀平;尚仲虎;李軍;姚建平;寇廣增;楊志華;高峰;;魏荊輸油管道漢江跨越管橋橋墩基礎(chǔ)加固[J];石油工程建設(shè);2011年05期
7 張建軍;;橋墩沉降及加固方法分析[J];低溫建筑技術(shù);2012年01期
8 覃兆海;陳良志;;大水平力作用下組合墩臺在引橋墩設(shè)計中的應(yīng)用[J];港工技術(shù);2009年01期
9 余賢高;吳曉陽;;橋墩基礎(chǔ)的水下控制爆破[J];采礦技術(shù);2010年04期
10 何繼善,柳建新;綜合物探方法在檢測橋墩及墩基礎(chǔ)中的應(yīng)用[J];中國有色金屬學(xué)報;1999年02期
相關(guān)會議論文 前10條
1 蘭雅梅;劉樺;薛雷平;;橋墩基礎(chǔ)上波流力研究[A];第十二屆中國海岸工程學(xué)術(shù)討論會論文集[C];2005年
2 郭興杰;程和琴;王冬梅;楊忠勇;宋澤坤;胡浩;;橋墩周邊流場模擬分析[A];第十六屆中國海洋(岸)工程學(xué)術(shù)討論會(下冊)[C];2013年
3 楊作興;彭濟南;劉民;;巖錨加樁處理橋墩下沉開裂施工技術(shù)[A];地面巖石工程與注漿技術(shù)學(xué)術(shù)研討會論文集[C];1997年
4 王樹卿;;寧岢線48號橋橋墩病害整治[A];高速重載與普通鐵路橋隧運營管理與檢測修理技術(shù)論文集(上冊)[C];2010年
5 蘇文麗;富立彬;李隨敏;鄭來國;;寧岢線48號橋橋墩加固整治[A];發(fā)展重載運輸技術(shù)適應(yīng)經(jīng)濟社會建設(shè)——鐵路重載運輸貨車暨工務(wù)學(xué)術(shù)研討會論文集(工務(wù)部分)[C];2011年
6 詹建輝;宛勁松;岳磊;;荊州長江公路大橋通航安全風(fēng)險評估及橋墩防撞加固措施研究[A];湖北公路交通防災(zāi)救災(zāi)安保工程專家論壇專輯[C];2008年
7 胡守海;代平玉;宋社強;李勝濤;;興隆水利樞紐左岸交通橋9號橋墩基礎(chǔ)水下高噴加固施工技術(shù)[A];2013水利水電地基與基礎(chǔ)工程技術(shù)——中國水利學(xué)會地基與基礎(chǔ)工程專業(yè)委員會第12次全國學(xué)術(shù)會議論文集[C];2013年
8 屈匡時;;蕪湖長江大橋正橋水中橋墩基礎(chǔ)設(shè)計[A];第九屆全國結(jié)構(gòu)工程學(xué)術(shù)會議論文集第Ⅱ卷[C];2000年
9 丁明波;陳興沖;;客運專線橋梁的抗震性能試驗研究[A];第十八屆全國橋梁學(xué)術(shù)會議論文集(下冊)[C];2008年
10 謝建綱;;武漢長漢公路橋特大型深水橋墩基礎(chǔ)精密控制測量[A];全國橋梁結(jié)構(gòu)學(xué)術(shù)大會論文集(上冊)[C];1992年
相關(guān)重要報紙文章 前4條
1 黃悅平;除險加固為韶城橋梁強筋骨[N];韶關(guān)日報;2006年
2 記者 裘立華 舒繼華;“優(yōu)良工程”“橋裂裂”,為何無人被問責(zé)[N];新華每日電訊;2010年
3 本報記者 李江濤 通訊員 左旭;讓每座橋都成為城市景點[N];洛陽日報;2009年
4 新華社記者 裘立華 舒繼華;優(yōu)良工程何以退化成“橋裂裂”[N];中國安全生產(chǎn)報;2010年
相關(guān)博士學(xué)位論文 前2條
1 莊元;橋梁通航論證關(guān)鍵技術(shù)研究[D];武漢理工大學(xué);2008年
2 陳楚龍;船撞橋墩仿真分析及下構(gòu)安全概率評估[D];華中科技大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 阿不都熱合曼(Shukur Rahman);蘭青線湟水河2號橋橋墩基礎(chǔ)加固研究[D];西南交通大學(xué);2015年
2 俞艷;山區(qū)河流橋墩基礎(chǔ)沖刷計算與防護方法研究[D];西南科技大學(xué);2015年
3 吉鴻敏;圓柱橋墩繞流的數(shù)值模擬研究[D];西北農(nóng)林科技大學(xué);2015年
4 鄭毅;既有鐵路橋墩健全度評估方法及自振特性研究[D];北京交通大學(xué);2010年
5 許保華;橋墩周圍通航寬度影響研究[D];河海大學(xué);2007年
6 郭超;橋墩沖刷與波流力的試驗研究[D];清華大學(xué);2012年
7 王坤;海洋深水環(huán)境橋墩基礎(chǔ)抗沖刷技術(shù)研究[D];長安大學(xué);2013年
8 高蘇;基于有限元法的橋墩對橋跨橫向振動的影響研究[D];東南大學(xué);2006年
9 于哲;城市高架橋梁基礎(chǔ)約束剛度識別及橋墩抗震性能評估研究[D];中南大學(xué);2010年
10 劉永吉;考慮流固耦合效應(yīng)的水中橋墩動力響應(yīng)分析[D];重慶交通大學(xué);2012年
,本文編號:2456259
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2456259.html