基于剩余推力法與BP神經(jīng)網(wǎng)絡(luò)的玄武巖殘坡積土公路邊坡穩(wěn)定性預(yù)測
[Abstract]:In this paper, the residual thrust method and BP neural network are used to calculate and predict the stability of the slope with K _ 5-170~K5-220 section of Songyin Highway in Guizhou Province as an engineering research object. The field measured section is selected as the calculation section, and four calculation conditions are set. The stability coefficient of the natural state of the slope (case 1) is 1.085, and when the slope is in 16m ground water level (case 2), the stability coefficient of the slope is obtained by the residual thrust method. The slope stability coefficient is less than 1. 1 when the changing water level of 16m ~ 8m (condition 3) and the groundwater level of 16m ~ 8m (case 4) are under heavy rain (condition 4). The analysis of sensitive factors of slope stability shows that the average sensitive coefficient of cohesive force of sliding zone soil is 15.9%, the internal friction angle is 48.3%, and the groundwater level is 34.0%, which indicates that the internal friction angle of sliding zone soil has the greatest influence on slope stability. The second is the groundwater level. Other basalt residual slope landslides of the same section are selected as training samples, BP network is designed step by means of ANN toolbox of Matlab neural network, and adaptive traingdx function of momentum learning rate is selected as training function. The result of BP neural network prediction shows that the average stability coefficient of slope condition 1 is 1.095 脳 1.139, and that of condition 3 is 0.988 / 1.021, the prediction results of BP neural network show that the average stability coefficient of slope condition 1 is 1.095 脳 1.139 and 0.988 / 1.021, respectively. Considering the influence of torrential rain on slope stability, sliding failure of slope may occur when working condition is 4. The error between the prediction results of neural network and the residual thrust calculation results is large, the maximum error is 45.87%, but the relative error between the predicted results of BP neural network and the residual thrust calculation results is greatly reduced, only 0.4% to 5.2%. When the input parameters of BP network are reduced to 5, the prediction accuracy is higher, indicating that the factors such as cohesion, internal friction angle, slope height, slope angle and wet degree have a substantial effect on slope stability, while other factors have lower influence weight on slope stability.
【作者單位】: 張家口職業(yè)技術(shù)學(xué)院;北京工業(yè)大學(xué)交通工程北京市重點(diǎn)實(shí)驗(yàn)室;中國地質(zhì)科學(xué)院地質(zhì)力學(xué)研究所;
【基金】:河北省科技計(jì)劃自籌經(jīng)費(fèi)項(xiàng)目,項(xiàng)目編號152176267 國家“十二五”科技支撐計(jì)劃項(xiàng)目,項(xiàng)目編號2012BAK10B02
【分類號】:U416.14
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王建鋒,Wilson H.Tnag,崔政權(quán);邊坡穩(wěn)定性分析中的剩余推力法[J];中國地質(zhì)災(zāi)害與防治學(xué)報(bào);2001年03期
2 翟鐵軍;;改進(jìn)剩余推力法在某滑坡穩(wěn)定分析中的應(yīng)用[J];鐵道建筑;2006年05期
3 胡朝陽;;滲流作用下滑坡穩(wěn)定分析的剩余推力法研究[J];科協(xié)論壇(下半月);2011年01期
4 祁生林,祁生文,伍法權(quán),劉春玲;基于剩余推力法的地震滑坡永久位移研究[J];工程地質(zhì)學(xué)報(bào);2004年01期
5 趙桂芳,姚前元;運(yùn)用剩余推力法評價(jià)滑坡穩(wěn)定性[J];湖北地礦;2002年03期
6 張奇華;彭榮生;駱建宇;;考慮力矩平衡的剩余推力法及其應(yīng)用[J];長江科學(xué)院院報(bào);2008年06期
7 方玉樹;;關(guān)于“考慮力矩平衡的三維剩余推力法”的討論[J];巖土工程學(xué)報(bào);2009年03期
8 潘尚奇;陽泉第二發(fā)電廠升壓站土體邊坡穩(wěn)定性分析[J];電力勘測;1995年03期
9 張宜虎,尹紅梅,簡文星;剩余推力法及其在斜坡穩(wěn)定性評價(jià)中的應(yīng)用[J];巖土力學(xué);2004年04期
10 莊儒新;楊向東;石光炬;;基于剩余推力法的地震滑坡穩(wěn)定性分析[J];西部探礦工程;2008年04期
相關(guān)碩士學(xué)位論文 前1條
1 萬娜;滑坡的三維穩(wěn)定分析方法研究[D];武漢大學(xué);2005年
,本文編號:2436578
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2436578.html