大跨徑斜拉橋風(fēng)致顫振、抖振響應(yīng)控制分析
[Abstract]:Wind-induced flutter damage of the famous Tacoma Bridge makes people realize the importance of bridge wind-resistant design in bridge design. With the enhancement of bridge design and construction ability, modern bridge span is becoming larger and larger, the system is more and more soft, and more sensitive to wind load. The problem of bridge wind resistance is more prominent. With the rapid development of structural vibration control technology, the theoretical research of tuned vibration control technology has become more mature and widely used. As the main tuned vibration absorber, tuned mass damper is widely used in structural disaster prevention and mitigation engineering. Tuned mass damper (TMD) is a flexible and effective damping measure, which can be designed for different needs. The tuned mass damper system can effectively reduce the dynamic effect of the structure, and is widely used in the seismic and wind resistant design of high-rise building structures, high-rise structures and bridges. In this paper, a long-span cable-stayed bridge is selected as an engineering example. The following problems are studied: (1) the working principle of tuned mass damper and its application in wind resistance of cable-stayed bridge are studied. The advantages and disadvantages are discussed. (2) the influence of natural wind and pulsating wind on the structure, the stability of bridge static wind and the calculation method of torsional divergence and transverse buckling critical wind speed are introduced. Using harmonic synthesis method, the space pulsating wind field is artificially simulated by the target power spectrum function. The horizontal (downwind) pulsation wind spectrum is modeled by Simiu wind spectrum model and the vertical pulsating wind spectrum is modeled by Lumley-Pnofsky wind spectrum model. The random wind time history samples of the cable-stayed bridge are obtained. The simulated spectrum coincides well with the target spectrum, and the simulated spectrum of each point is very close. (3) using finite element software ANSYS, to establish the simulation analysis of the damper damping system, the three-dimensional model of the bridge is obtained, and the dynamic characteristics of the bridge are analyzed. The influence parameters of tuned mass dampers are studied. By adjusting the damping ratio parameters and the layout of the controller, the effect of the damping ratio on the wind-induced flutter is compared and analyzed. The results show that the flutter critical wind speed can be improved to some extent with the first and larger damping ratio. The larger the critical wind speed damping ratio is, the greater the critical wind speed is, but the smaller the lifting range is. (4) changing the layout and parameters of the damper, comparing and analyzing the different arrangement schemes, ANSYS calculation results show that the variance of lateral buffeting displacement and acceleration root of bridge wind induced by dampers is reduced, and the effect of buffeting control is related to the layout of the controller. The reasonable selection of controller parameters and the optimal arrangement of tuned mass dampers will make the wind-induced lateral buffeting of bridges more effective.
【學(xué)位授予單位】:武漢理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:U441.3;U448.27
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 丁幼亮;胡心一;張志強(qiáng);宋建永;李萬(wàn)恒;張文明;王玉倩;;考慮橋塔風(fēng)效應(yīng)的多塔斜拉橋抖振響應(yīng)分析[J];工程力學(xué);2014年10期
2 李加武;車(chē)艷陽(yáng);李宇;白樺;;鋼拱塔施工和成塔狀態(tài)的風(fēng)振控制[J];長(zhǎng)安大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年05期
3 周奇;朱樂(lè)東;趙傳亮;;開(kāi)槽斷面斜拉橋的隨機(jī)抖振數(shù)值分析[J];土木工程學(xué)報(bào);2014年08期
4 文永奎;盧文良;;分布式TMD對(duì)斜拉橋抖振減振的參數(shù)優(yōu)化及分析[J];土木工程學(xué)報(bào);2014年06期
5 李龍安;苗潤(rùn)池;屈愛(ài)平;;超長(zhǎng)斜拉索風(fēng)致振動(dòng)控制研究[J];地震工程與工程振動(dòng);2014年03期
6 汪志昊;陳政清;王建輝;;采用雙向調(diào)諧質(zhì)量阻尼器的大跨度橋梁風(fēng)振控制仿真分析[J];防災(zāi)減災(zāi)工程學(xué)報(bào);2014年03期
7 汪榮繡;張景君;;不對(duì)稱(chēng)獨(dú)塔斜拉橋風(fēng)致顫振分析[J];山東交通學(xué)院學(xué)報(bào);2014年02期
8 張宏杰;朱樂(lè)東;胡曉紅;;超千米級(jí)斜拉橋抗風(fēng)穩(wěn)定性風(fēng)洞試驗(yàn)[J];中國(guó)公路學(xué)報(bào);2014年04期
9 丁幼亮;周廣東;李萬(wàn)恒;王曉晶;閆昕;;基于演化譜理論的橋梁風(fēng)致響應(yīng)非平穩(wěn)性分析[J];中國(guó)公路學(xué)報(bào);2013年05期
10 馬婷婷;葛耀君;趙林;;大跨度斜拉橋施工階段抗風(fēng)性能變化規(guī)律[J];振動(dòng)與沖擊;2013年12期
相關(guān)博士學(xué)位論文 前8條
1 喻梅;大跨度橋梁顫振及渦激振動(dòng)主動(dòng)控制[D];西南交通大學(xué);2013年
2 劉會(huì);跨海大跨度斜拉橋施工階段顫振穩(wěn)定性研究[D];重慶大學(xué);2011年
3 陳國(guó)芳;大跨度橋梁顫抖振分析[D];大連理工大學(xué);2011年
4 楊轉(zhuǎn)運(yùn);大跨度斜拉橋抖振響應(yīng)的氣動(dòng)導(dǎo)納函數(shù)研究[D];重慶大學(xué);2010年
5 姜天華;大跨度橋梁風(fēng)致振動(dòng)控制研究[D];武漢理工大學(xué);2009年
6 楊詠漪;大跨度橋梁風(fēng)致抖振疲勞研究[D];西南交通大學(xué);2008年
7 韓艷;橋梁結(jié)構(gòu)復(fù)氣動(dòng)導(dǎo)納函數(shù)與抖振精細(xì)化研究[D];湖南大學(xué);2008年
8 曾憲武;大跨度橋梁多模態(tài)耦合顫抖振及其控制研究[D];華南理工大學(xué);2006年
相關(guān)碩士學(xué)位論文 前7條
1 莊欠國(guó);疊合梁懸索橋的抗風(fēng)性能研究[D];湖南大學(xué);2014年
2 湯和鵬;斜拉橋風(fēng)致抖振與車(chē)橋耦合振動(dòng)的MTMD減振方法研究[D];哈爾濱工業(yè)大學(xué);2014年
3 劉飛;鐵路部分斜拉橋動(dòng)力特性及顫振穩(wěn)定性分析[D];蘭州交通大學(xué);2013年
4 羅棋少;基于三維流場(chǎng)的大跨度連續(xù)剛構(gòu)橋風(fēng)荷載數(shù)值模擬及抖振時(shí)域分析[D];中南大學(xué);2010年
5 張晉媛;大跨度斜拉橋線性抖振時(shí)域分析[D];西南交通大學(xué);2010年
6 董玲瓏;超大跨度斜拉橋施工全過(guò)程抗風(fēng)穩(wěn)定性研究[D];浙江工業(yè)大學(xué);2009年
7 張茜;大跨度斜拉橋風(fēng)致抖振響應(yīng)的非線性時(shí)程分析[D];長(zhǎng)安大學(xué);2007年
,本文編號(hào):2428217
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2428217.html