基于視覺技術(shù)的道路交通信息提取方法研究
[Abstract]:In order to solve the problems arising from the rapid development of urban traffic, intelligent transportation system has become the focus of research at home and abroad. Comprehensive, accurate and real-time traffic information can provide data support for the construction of intelligent transportation system. It is the basis for traffic dredge, road network planning and pedestrian route decision. The effective extraction of traffic information is a key factor restricting the development of intelligent transportation system (its). This paper focuses on traffic information extraction methods. Compared with the traditional traffic information extraction method, the traffic information extraction method based on computer vision technology has become a hot topic in the field of intelligent transportation because of its advantages of convenient installation and maintenance of equipment and low cost. However, because of the vehicle shadow caused by illumination and the ghost image in vehicle detection, the detection accuracy will be greatly reduced. Most of the virtual coils commonly used in information extraction methods need to be manually set and the parameters are difficult to determine. The application of traffic information extraction method based on visual technology is still limited. The main achievements of this paper are as follows: (1) aiming at the shadow problem in vehicle detection, this paper proposes a shadow cancellation algorithm for traffic video vehicles based on principal component analysis (PCA). The algorithm has high robustness, no special requirements for traffic scenes, no pre-training and manual intervention, the introduction of principal component analysis (PCA) greatly reduces the computational complexity. Compared with the traditional shadow cancellation algorithm, the comprehensive index of shadow cancellation in this algorithm is increased by more than 10%, and the computational efficiency is increased by more than 30%. (2) aiming at the ghost image problem in vehicle detection, the algorithm is based on the real-time ViBe algorithm. A V-ViBe algorithm is proposed. By constructing a "virtual" background image, the algorithm changes the original background model of the traditional ViBe algorithm to suppress the generation of ghost images from the source, and uses morphological knowledge to perfect the detection target. Experimental results show that the performance of this algorithm is better than that of the original ViBe algorithm. (3) in the stage of information extraction, the performance of this algorithm is better than that of the original ViBe algorithm. Using the prominent feature of lane color in (4) (7) space and the principle of Hough transform to extract lane line; According to the deformation coefficient of the lane line in the image set the virtual coil which coincides with the shape of the lane. Combined with the vehicle detection algorithm in this paper the traffic information parameters of the traffic surveillance video are extracted.
【學(xué)位授予單位】:山東理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U495
【參考文獻】
相關(guān)期刊論文 前10條
1 甘玲;李瑞;;基于自適應(yīng)虛擬線圈的多車道車流量檢測算法[J];計算機應(yīng)用;2016年12期
2 閆碩;陳科山;;基于雙背景模型的鬼影抑制方法研究[J];計算機應(yīng)用與軟件;2016年05期
3 邱一川;張亞英;劉春梅;;多特征融合的車輛陰影消除[J];中國圖象圖形學(xué)報;2015年03期
4 陳亮;陳曉竹;胡正東;;用于鬼影抑制的區(qū)域檢測算法[J];中國計量學(xué)院學(xué)報;2015年01期
5 嚴紅亮;王福龍;劉志煌;沈士忠;;基于ViBe算法的改進背景減去法[J];計算機系統(tǒng)應(yīng)用;2014年06期
6 華媛蕾;劉萬軍;;改進混合高斯模型的運動目標檢測算法[J];計算機應(yīng)用;2014年02期
7 李百惠;楊庚;;混合高斯模型的自適應(yīng)前景提取[J];中國圖象圖形學(xué)報;2013年12期
8 熊平;白云鵬;;帶寬自適應(yīng)Mean Shift圖像分割算法[J];計算機工程與應(yīng)用;2013年23期
9 黃凱奇;譚鐵牛;;視覺認知計算模型綜述[J];模式識別與人工智能;2013年10期
10 周建英;吳小培;張超;呂釗;;基于滑動窗的混合高斯模型運動目標檢測方法[J];電子與信息學(xué)報;2013年07期
相關(guān)博士學(xué)位論文 前3條
1 耿慶田;基于圖像識別理論的智能交通系統(tǒng)關(guān)鍵技術(shù)研究[D];吉林大學(xué);2016年
2 李琦;面向行人群信息提取的視頻圖像目標跟蹤算法研究[D];北京交通大學(xué);2013年
3 李峰;智能視頻監(jiān)控系統(tǒng)中的行人運動分析研究[D];中國科學(xué)技術(shù)大學(xué);2011年
相關(guān)碩士學(xué)位論文 前9條
1 張潤初;基于視頻的交通流參數(shù)提取方法及系統(tǒng)實現(xiàn)研究[D];華南理工大學(xué);2015年
2 劉緯琪;基于視頻流的道路交通流參數(shù)自動檢測方法研究[D];長安大學(xué);2014年
3 高秀秀;車輛的實時檢測與跟蹤技術(shù)的研究[D];電子科技大學(xué);2014年
4 許成闖;基于視頻的車流量檢測技術(shù)研究與實現(xiàn)[D];南京理工大學(xué);2014年
5 邱禎艷;基于實時視頻的運動目標檢測算法[D];中國計量學(xué)院;2013年
6 王旭昕;電子警察系統(tǒng)中虛擬線圈技術(shù)研究與實現(xiàn)[D];電子科技大學(xué);2013年
7 安澤萍;基于攝像機標定的交通流參數(shù)檢測研究[D];長安大學(xué);2010年
8 郭永濤;運動車輛視頻檢測與跟蹤技術(shù)研究[D];長安大學(xué);2007年
9 葉永杰;基于動態(tài)圖像理解技術(shù)的智能交通監(jiān)控技術(shù)[D];浙江工業(yè)大學(xué);2007年
,本文編號:2424355
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2424355.html