天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 路橋論文 >

高速公路交通運(yùn)行狀態(tài)判別方法研究

發(fā)布時(shí)間:2019-02-13 06:51
【摘要】:在經(jīng)濟(jì)迅猛增長(zhǎng)的今天,城市交通運(yùn)行態(tài)勢(shì)日趨嚴(yán)峻的同時(shí)高速公路從原來的解決制約經(jīng)濟(jì)運(yùn)輸發(fā)展的助力,已經(jīng)開始演變成又一個(gè)亟需緩解的問題。 伴隨著我國(guó)的汽車保有量逐年大幅度的上升,我國(guó)的許多高速公路上也相繼產(chǎn)生了交通擁堵的問題并有加劇的趨勢(shì),整個(gè)高速公路路網(wǎng)急速駛?cè)搿皳矶聲r(shí)代”。針對(duì)以上現(xiàn)象,本文從交通運(yùn)行狀態(tài)含義而提出高速公路運(yùn)行狀態(tài)體系,從基于對(duì)于高速公路的環(huán)境來具體分析高速公路運(yùn)行狀態(tài)體系的需求出發(fā),進(jìn)而建立運(yùn)行狀態(tài)體系。本文從設(shè)計(jì)原則到指標(biāo)選取,從體系的搭建到狀態(tài)指標(biāo)的量化進(jìn)行了詳細(xì)的論述。 在對(duì)交通狀態(tài)指標(biāo)體系架構(gòu)分析的基礎(chǔ)上,本文確立了由區(qū)間交通參數(shù)決定的交通擁擠評(píng)價(jià)標(biāo)準(zhǔn)和由地點(diǎn)交通參數(shù)決定的交通擁擠評(píng)價(jià)標(biāo)準(zhǔn),針對(duì)高速公路中這個(gè)特殊交通運(yùn)行環(huán)境提出交通運(yùn)行狀態(tài)判別的算法。算法結(jié)合交通擁擠評(píng)價(jià)標(biāo)準(zhǔn)的要求,評(píng)判模型由地點(diǎn)參數(shù)決定的判別、由區(qū)間參數(shù)決定的判別和由數(shù)據(jù)融合決定的判別聯(lián)合構(gòu)成。研究分別對(duì)各方法進(jìn)行了細(xì)致的闡述,最終達(dá)到可靠分析交通狀態(tài),,合理監(jiān)控、分析并實(shí)施預(yù)警,實(shí)現(xiàn)交通管理服務(wù)的目的。 同時(shí)本文分析了交通緊急事件檢測(cè)的重要作用,從高速公路交通事件檢測(cè)的基本原理剖析,論述了高速公路交通事件的影響因素,概述了自動(dòng)檢測(cè)交通事件經(jīng)典算法,并以此提出了基于支持向量機(jī)的高速公路交通緊急事件判別算法,接著對(duì)支持向量機(jī)參數(shù)進(jìn)行最優(yōu)值尋找,又引入改進(jìn)的粒子群算法,提出了基于改進(jìn)的粒子群-支持向量機(jī)的高速公路交通緊急事件判別模型。通過基于網(wǎng)絡(luò)搜索的參數(shù)尋優(yōu)實(shí)驗(yàn)、基于基本粒子群的參數(shù)尋優(yōu)實(shí)驗(yàn)和基于改進(jìn)粒子群的參數(shù)尋優(yōu)實(shí)驗(yàn),驗(yàn)證了本文設(shè)計(jì)算法的性能。
[Abstract]:With the rapid growth of economy, the situation of urban traffic operation is becoming more and more severe. Meanwhile, the expressway has become another problem that needs to be alleviated from the original solution to restrict the development of economic transportation. With the increase of the number of cars in our country, the traffic congestion on many expressways in our country has also been increased, and the whole highway network has rapidly entered the "congestion era". In view of the above phenomenon, this paper puts forward the expressway running state system from the meaning of the traffic running state, and starts from the concrete analysis of the expressway running state system based on the environment of the expressway, and then establishes the running state system. This paper discusses in detail from design principle to index selection, from system construction to quantification of state index. Based on the analysis of traffic state index system, this paper establishes the evaluation criteria of traffic congestion determined by interval traffic parameters and traffic congestion evaluation standards determined by location traffic parameters. This paper presents an algorithm for judging the traffic running state in this special traffic environment in expressway. The algorithm combines with the requirements of traffic congestion evaluation standard, and the judgment model is composed of location parameters, interval parameters and data fusion. The methods are elaborated in detail, and the traffic condition is analyzed reliably, the traffic condition is monitored reasonably, the early warning is analyzed and implemented, and the purpose of traffic management and service is realized. At the same time, this paper analyzes the important role of traffic emergency detection, analyzes the basic principle of expressway traffic incident detection, discusses the influencing factors of expressway traffic incident, and summarizes the classical algorithm of automatic traffic event detection. Based on support vector machine (SVM), a highway traffic emergency identification algorithm is proposed, and then the optimal value of support vector machine parameters is found, and an improved particle swarm optimization algorithm is introduced. An improved particle swarm optimization (PSO)-support vector machine (SVM) based expressway traffic emergency discrimination model is proposed. The performance of the proposed algorithm is verified by the experiments of parameter optimization based on network search, parameter optimization based on basic particle swarm optimization and parameter optimization based on improved particle swarm optimization.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U491

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 裴玉龍,蓋春英;公路網(wǎng)絡(luò)運(yùn)營(yíng)可靠度研究[J];公路交通科技;2005年05期

2 王力;范耀祖;張海;;基于探測(cè)車技術(shù)和多級(jí)模糊模式識(shí)別的道路交通狀態(tài)評(píng)價(jià)方法[J];公路交通科技;2007年09期

3 楊志勇;馬紅偉;陳小平;;基于模糊邏輯的高速公路事件檢測(cè)算法研究[J];重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年06期

4 姚智勝;邵春福;;道路交通狀態(tài)預(yù)測(cè)研究[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2009年04期

5 戢曉峰;劉瀾;何增輝;;基于模糊推理的區(qū)域路網(wǎng)交通狀態(tài)分析方法[J];交通運(yùn)輸工程與信息學(xué)報(bào);2009年03期

6 袁月明;關(guān)偉;吳建平;;基于視頻檢測(cè)技術(shù)的城市快速路交通狀態(tài)分析研究[J];交通與計(jì)算機(jī);2008年04期

7 叢浩哲;方守恩;王俊驊;;交通事件持續(xù)時(shí)間影響因素分析及其回歸模型[J];交通信息與安全;2010年03期

8 康國(guó)祥;方守恩;;Cox Regression模型在交通事件持續(xù)時(shí)間研究中的應(yīng)用[J];交通信息與安全;2011年02期

9 史忠科;高速公路交通狀態(tài)的聯(lián)合估計(jì)方法[J];控制與決策;2003年06期

10 鄭黎黎;丁同強(qiáng);范海燕;楊兆升;孫健;;高速公路交通事件影響范圍的模糊預(yù)測(cè)[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2009年01期

相關(guān)博士學(xué)位論文 前4條

1 王新穎;基于網(wǎng)格的短時(shí)交通狀態(tài)預(yù)測(cè)研究[D];吉林大學(xué);2010年

2 張揚(yáng);城市路網(wǎng)交通預(yù)測(cè)模型研究及應(yīng)用[D];上海交通大學(xué);2009年

3 李琦;基于多源數(shù)據(jù)的交通狀態(tài)監(jiān)測(cè)與預(yù)測(cè)方法研究[D];吉林大學(xué);2013年

4 孫曉亮;城市道路交通狀態(tài)評(píng)價(jià)和預(yù)測(cè)方法及應(yīng)用研究[D];北京交通大學(xué);2013年



本文編號(hào):2421294

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2421294.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b74b8***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com