高速公路交通運(yùn)行狀態(tài)判別方法研究
[Abstract]:With the rapid growth of economy, the situation of urban traffic operation is becoming more and more severe. Meanwhile, the expressway has become another problem that needs to be alleviated from the original solution to restrict the development of economic transportation. With the increase of the number of cars in our country, the traffic congestion on many expressways in our country has also been increased, and the whole highway network has rapidly entered the "congestion era". In view of the above phenomenon, this paper puts forward the expressway running state system from the meaning of the traffic running state, and starts from the concrete analysis of the expressway running state system based on the environment of the expressway, and then establishes the running state system. This paper discusses in detail from design principle to index selection, from system construction to quantification of state index. Based on the analysis of traffic state index system, this paper establishes the evaluation criteria of traffic congestion determined by interval traffic parameters and traffic congestion evaluation standards determined by location traffic parameters. This paper presents an algorithm for judging the traffic running state in this special traffic environment in expressway. The algorithm combines with the requirements of traffic congestion evaluation standard, and the judgment model is composed of location parameters, interval parameters and data fusion. The methods are elaborated in detail, and the traffic condition is analyzed reliably, the traffic condition is monitored reasonably, the early warning is analyzed and implemented, and the purpose of traffic management and service is realized. At the same time, this paper analyzes the important role of traffic emergency detection, analyzes the basic principle of expressway traffic incident detection, discusses the influencing factors of expressway traffic incident, and summarizes the classical algorithm of automatic traffic event detection. Based on support vector machine (SVM), a highway traffic emergency identification algorithm is proposed, and then the optimal value of support vector machine parameters is found, and an improved particle swarm optimization algorithm is introduced. An improved particle swarm optimization (PSO)-support vector machine (SVM) based expressway traffic emergency discrimination model is proposed. The performance of the proposed algorithm is verified by the experiments of parameter optimization based on network search, parameter optimization based on basic particle swarm optimization and parameter optimization based on improved particle swarm optimization.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U491
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 裴玉龍,蓋春英;公路網(wǎng)絡(luò)運(yùn)營(yíng)可靠度研究[J];公路交通科技;2005年05期
2 王力;范耀祖;張海;;基于探測(cè)車技術(shù)和多級(jí)模糊模式識(shí)別的道路交通狀態(tài)評(píng)價(jià)方法[J];公路交通科技;2007年09期
3 楊志勇;馬紅偉;陳小平;;基于模糊邏輯的高速公路事件檢測(cè)算法研究[J];重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年06期
4 姚智勝;邵春福;;道路交通狀態(tài)預(yù)測(cè)研究[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2009年04期
5 戢曉峰;劉瀾;何增輝;;基于模糊推理的區(qū)域路網(wǎng)交通狀態(tài)分析方法[J];交通運(yùn)輸工程與信息學(xué)報(bào);2009年03期
6 袁月明;關(guān)偉;吳建平;;基于視頻檢測(cè)技術(shù)的城市快速路交通狀態(tài)分析研究[J];交通與計(jì)算機(jī);2008年04期
7 叢浩哲;方守恩;王俊驊;;交通事件持續(xù)時(shí)間影響因素分析及其回歸模型[J];交通信息與安全;2010年03期
8 康國(guó)祥;方守恩;;Cox Regression模型在交通事件持續(xù)時(shí)間研究中的應(yīng)用[J];交通信息與安全;2011年02期
9 史忠科;高速公路交通狀態(tài)的聯(lián)合估計(jì)方法[J];控制與決策;2003年06期
10 鄭黎黎;丁同強(qiáng);范海燕;楊兆升;孫健;;高速公路交通事件影響范圍的模糊預(yù)測(cè)[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2009年01期
相關(guān)博士學(xué)位論文 前4條
1 王新穎;基于網(wǎng)格的短時(shí)交通狀態(tài)預(yù)測(cè)研究[D];吉林大學(xué);2010年
2 張揚(yáng);城市路網(wǎng)交通預(yù)測(cè)模型研究及應(yīng)用[D];上海交通大學(xué);2009年
3 李琦;基于多源數(shù)據(jù)的交通狀態(tài)監(jiān)測(cè)與預(yù)測(cè)方法研究[D];吉林大學(xué);2013年
4 孫曉亮;城市道路交通狀態(tài)評(píng)價(jià)和預(yù)測(cè)方法及應(yīng)用研究[D];北京交通大學(xué);2013年
本文編號(hào):2421294
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2421294.html