基于大規(guī)模GPS軌跡數(shù)據(jù)的出租車服務(wù)策略研究
[Abstract]:At present, in the field of urban transportation, GPS equipment has been widely used. For example, almost every taxi is equipped with GPS terminal equipment that transmits data such as taxi location and operation status to traffic management for real-time monitoring. In fact, the taxi drivers' intelligence information, such as service strategy, is hidden in the taxi GPS data. On the one hand, it can guide taxi drivers to improve their operation mode and increase their income. On the other hand, it can also help the management to improve the efficiency of taxi system operation. However, the current analysis of taxi GPS data is relatively preliminary; at the same time, taxi GPS data scale is huge, for example, Xi'an taxi GPS data scale is close to TB level. It has been proved that the traditional information processing platform can not effectively analyze the GPS data of the above scale. In order to solve the above problems, this paper uses big data platform Hadoop to mine and analyze taxi service strategy of GPS data. Hadoop is a popular big data platform. Using parallel computing structure can complete the data analysis work of TB scale and above. At the same time, because of the advantages of open source, expandability, low cost and easy programming, it has become a de facto standard in big data's processing field. Taxi service strategy is a mathematical model for driver service process, which mainly refers to passenger search strategy, passenger transportation strategy, service area preference and so on. After the data preprocessing of GPS data, the operation track of taxi day shift is extracted firstly, and the income of taxi driver is quantified according to the GPS track. According to the rank of income, the higher income and general group of drivers are taken as sample drivers, and the service strategy and usage of the sample drivers are collected and counted. Finally, the relationship between service strategy and income is analyzed. In the test example, the similarities and differences in passenger search strategy, passenger transport strategy and regional preference between different time slots of sample drivers are analyzed and compared.
【學(xué)位授予單位】:長安大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U495;TP311.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 杜江;張錚;張杰鑫;邰銘;;MapReduce并行編程模型研究綜述[J];計算機(jī)科學(xué);2015年S1期
2 安實;匡偉明;;出租車GPS數(shù)據(jù)軌跡化方法研究[J];科學(xué)技術(shù)與工程;2015年11期
3 楊揚(yáng);姚恩建;潘龍;趙楠;;基于GPS數(shù)據(jù)的出租車路徑選擇行為研究[J];交通運輸系統(tǒng)工程與信息;2015年01期
4 劉智慧;張泉靈;;大數(shù)據(jù)技術(shù)研究綜述[J];浙江大學(xué)學(xué)報(工學(xué)版);2014年06期
5 陳吉榮;樂嘉錦;;基于Hadoop生態(tài)系統(tǒng)的大數(shù)據(jù)解決方案綜述[J];計算機(jī)工程與科學(xué);2013年10期
6 賈歐陽;阮樹驊;田興;楊峻興;李丹;;MapReduce中Combine優(yōu)化機(jī)制的利用[J];計算機(jī)時代;2013年09期
7 許丞;劉洪;譚良;;Hadoop云平臺的一種新的任務(wù)調(diào)度和監(jiān)控機(jī)制[J];計算機(jī)科學(xué);2013年01期
8 孟小峰;慈祥;;大數(shù)據(jù)管理:概念、技術(shù)與挑戰(zhàn)[J];計算機(jī)研究與發(fā)展;2013年01期
9 桂智明;向宇;李玉鑒;;基于出租車軌跡的并行城市熱點區(qū)域發(fā)現(xiàn)[J];華中科技大學(xué)學(xué)報(自然科學(xué)版);2012年S1期
10 姚遠(yuǎn);王麗芳;蔣澤軍;;HDFS一致性管理的研究[J];現(xiàn)代電子技術(shù);2012年08期
相關(guān)碩士學(xué)位論文 前5條
1 王鄭委;基于大數(shù)據(jù)Hadoop平臺的出租車載客熱點區(qū)域挖掘研究[D];北京交通大學(xué);2016年
2 周小玉;HDFS分布式文件系統(tǒng)存儲策略研究[D];電子科技大學(xué);2015年
3 趙利剛;基于出租車軌跡數(shù)據(jù)的載客情況可視化分析[D];浙江工業(yè)大學(xué);2014年
4 王謙;HADOOP作業(yè)啟動性能優(yōu)化實踐[D];北京交通大學(xué);2012年
5 童明;基于HDFS的分布式存儲研究與應(yīng)用[D];華中科技大學(xué);2012年
,本文編號:2419782
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2419782.html