孔李淮河大跨鋼結(jié)構(gòu)橋在整體頂推過(guò)程中的仿真及應(yīng)力監(jiān)測(cè)分析
[Abstract]:The application of integral thrust construction technology in long span continuous arch bridge is less, and the data can be consulted less. In addition, due to the continuous change of the boundary conditions of the main bridge structure, the structural system is also very complex and changeable during the jacking process of the long-span continuous composite arch bridge. Therefore, in order to ensure the safety and smooth progress of the whole thrust process, it is very important to monitor the stress of each component of the main bridge. Based on the whole pushing of the main bridge structure of Kongli Huaihe River Bridge, based on Midas Civil finite element software, this paper simulates the whole pushing construction process of the three-span continuous beam-arch composite system arch bridge used in the main bridge structure. Based on the simulation results, the relevant measurement points are arranged in the field, and the measured data are obtained. By comparing and analyzing the stress, the paper finds out the most disadvantageous stage of the main bridge structure in the course of three-wheeled integral pushing construction, the maximum position and magnitude of the corresponding section stress, and the law of the stress variation of each structural member. It provides more references for the whole pushing of the same type of beam and arch composite system arch bridge in the future, and provides new ideas and directions for the research of the same type bridge's integral pushing construction. The main work of this paper is as follows: first, the construction scheme and integral pushing technology of the main bridge structure of Kongli Huaihe River Bridge are studied. The structure is composed of three main systems: arch system, rigid tie bar system (steel box girder), flexible tie bar system (external prestressing force) system, and suspender system. The structure is composed of three parts: arch rib system, rigid tie bar (steel box girder) system, flexible tie bar system (external prestressing force) system. This structure is corresponding to three-span three-wheel thrust. Secondly, the finite element model of the main bridge structure is established based on the Midas Civil finite element software, according to the integral thrust construction scheme adopted in the main bridge structure, according to the structure layout form of the main bridge structure. At the same time, the division of the construction stage of the whole pushing process is defined. Thirdly, the simulation results are extracted from the structure thrust scheme. The stress envelope diagram of the main components of the main bridge structure is extracted during the three-wheeled thrust process, and the most unfavorable section position of each member, the corresponding pushing stage and the most unfavorable section stress value are found. Fourthly, according to the simulation results, the strain sensors are arranged in the field and the measured results are collected. By monitoring the whole uninterrupted stress (strain) of the whole thrust construction process, the stress control of the whole thrust construction of the main bridge is realized, and the actual stress situation of the main bridge structure in each construction stage during the whole jacking construction process is monitored. Fifth, the simulation and measured stress values are compared and analyzed. By comparing the measured stresses on the unfavorable cross sections of the first, second and third wheeled thrust structures with the simulation results, it is found that the stress curves of the two structures are in good agreement with each other. The stress state of the structure in the process of pushing basically accords with the design requirements, and the Midas Civil finite element calculation model can well simulate the mechanical behavior of the members in the process of pushing.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U446;U445
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 譚鈞;;步履頂推施工過(guò)程中鋼槽梁局部受力分析[J];重慶科技學(xué)院學(xué)報(bào)(自然科學(xué)版);2014年05期
2 丁廣翔;;公路橋梁頂推法施工技術(shù)研究[J];交通建設(shè)與管理;2013年07期
3 劉繼蘭;;剛架拱橋加固機(jī)理研究及加固結(jié)果分析[J];中國(guó)高新技術(shù)企業(yè);2011年07期
4 史文杰;曾明根;蘇慶田;王巍;;九堡大橋主橋受力特性分析[J];橋梁建設(shè);2010年06期
5 李興高;;既有地鐵線路變形控制標(biāo)準(zhǔn)研究[J];鐵道建筑;2010年04期
6 陳永宏;;平勝大橋自錨式懸索橋鋼箱梁頂推施工[J];橋梁建設(shè);2006年S1期
7 邵旭東,陳愛(ài)軍,李立峰;長(zhǎng)沙市洪山大橋的創(chuàng)新設(shè)計(jì)[J];中外公路;2005年02期
8 田仲初,陳得良,顏東煌,陳政清;鋼箱提籃拱橋施工控制的關(guān)鍵技術(shù)研究[J];中國(guó)公路學(xué)報(bào);2004年03期
9 龔志剛 ,劉海燕;世界最高墩橋——法國(guó)米約多塔斜拉橋[J];世界橋梁;2004年02期
10 涂滿明;洪山廟大橋鋼梁頂推施工技術(shù)[J];鐵道建筑;2003年06期
相關(guān)博士學(xué)位論文 前1條
1 王福軍;沖擊接觸問(wèn)題有限元法并行計(jì)算及其工程應(yīng)用[D];清華大學(xué);2000年
相關(guān)碩士學(xué)位論文 前10條
1 王超超;中外規(guī)范部分條文的差異性研究[D];蘭州交通大學(xué);2015年
2 丁志全;曲線鋼箱梁橋頂推施工過(guò)程受力分析及成橋活載作用下的受力研究[D];重慶交通大學(xué);2014年
3 華啟迪;基于頂推施工鋼箱梁技術(shù)控制研究[D];蘇州科技學(xué)院;2014年
4 劉雙意;頂推施工法在波形鋼腹板組合箱梁中的應(yīng)用研究[D];湖南大學(xué);2014年
5 張培炎;橋梁頂推施工過(guò)程受力分析及關(guān)鍵問(wèn)題研究[D];西南交通大學(xué);2014年
6 羅大波;大件運(yùn)輸條件下蓋板涵結(jié)構(gòu)穩(wěn)定性的應(yīng)用程序研究[D];重慶交通大學(xué);2013年
7 高永進(jìn);某斜拉橋線形施工控制系統(tǒng)研究[D];華中科技大學(xué);2012年
8 王沁;混凝土斜連續(xù)梁橋頂推仿真計(jì)算及關(guān)鍵臨時(shí)構(gòu)件力學(xué)性能分析[D];長(zhǎng)沙理工大學(xué);2011年
9 羅育明;鋼管混凝土拱橋施工控制研究[D];中南林業(yè)科技大學(xué);2011年
10 劉小光;鋼箱梁頂推施工仿真計(jì)算與受力分析[D];長(zhǎng)沙理工大學(xué);2011年
,本文編號(hào):2417702
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2417702.html