復雜環(huán)境下交通標志的檢測
[Abstract]:In recent years, intelligent transportation system (Intelligent Transportation System, ITS) has attracted more and more attention. The system can reduce driving pressure and make people travel more freely, safely and reliably. As a necessary link of ITS, the traffic sign detection and recognition system (Traffic Signs Detection and Recognition System) is a reliable guarantee for intelligent vehicle or driver to obtain information of road condition. Detection of traffic signs is the key to recognition, accurate and real-time detection of the region of interest will lay a good foundation for recognition. In order to ensure the accuracy of detection, preprocessing is needed for the images taken in complex environment and driving environment. In this paper, two preprocessing steps of removing motion blur and dense fog are studied firstly, and then the detection method of sign is explored. Image blur restoration is divided into two categories: uniform linear motion blur restoration and non-uniform linear motion blur restoration. Aiming at the former, the general methods of fuzzy kernel scale and direction estimation and the basic algorithm of image restoration are introduced. For the latter, the fuzzy kernel method of strong edge estimation is improved, the edge preserving denoising is carried out by the guide filter, and the operation is carried out in the three channels of RG GnB at the cost of increasing the computational cost. The algorithm can directly process color images, and the restoration results retain the color information of the images. Aiming at the problem of image de-fogging, this paper adopts the dark channel (Dark Channel Prior) method, which is a recent research result in the field of de-fogging. Based on the prior knowledge of dark channels, the atomization image is restored, and a method of combining guidance filtering with linear interpolation is proposed in the aspect of transmission function optimization. After pre-processing, the natural images are detected by traffic signs. The detection links are divided into two parts: (1) the 2-D normal distribution model of 1 component and Q component in YIQ color space is established for red, blue and yellow colors. The color of the three normal distribution models is segmented by the pixels to be detected, and then the white area in the binary image is obtained as the initial region of interest. (2) the size and angle of the shape are selected. The Hu moment invariant feature with strong rotation robustness is obtained. The Hu moment invariant feature of each region is obtained for the region of interest obtained by initial segmentation. The classifier is trained by support vector machine (SVM) (Support Vector Machine, SVM). Eliminating irregular categories and retaining traffic signs with circular, rectangular and triangular types as the final detection results. The main work of this paper is to study and improve the algorithm of removing motion blur and dense fog, which makes it more effective, more real-time and more in line with the practical requirements of traffic sign preprocessing. In the detection stage, the algorithm is effective, the false detection rate and the missing detection rate are low, the real-time performance is good, and it has good performance to the illumination variation and a small amount of occlusion and so on.
【學位授予單位】:山東大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:U495;TP391.41
【相似文獻】
相關期刊論文 前10條
1 魏偉波;芮筱亭;;不變矩方法研究[J];火力與指揮控制;2007年11期
2 徐海卿;李培軍;沈毅;;加入不變矩的高分辨率遙感圖像分類[J];國土資源遙感;2008年02期
3 蘇維國;郭少臣;周繼廣;宋青;張力;;基于不變矩理論的腐蝕等級評定方法研究[J];裝備環(huán)境工程;2012年01期
4 錢忠良,王文軍;不變矩目標特征描述誤差分析和基于上層建筑不變矩的艦船識別[J];電子測量與儀器學報;1994年03期
5 鄭全錄;趙薇;韓凌;王宏;;基于頻譜臉和不變矩人臉識別新方法的研究[J];機械設計與制造;2006年05期
6 高向東;楊大鵬;劉紅;;基于不變矩算法的行人識別方法研究[J];鄭州大學學報(工學版);2011年02期
7 王福斌;劉杰;陳至坤;王靜波;;挖掘機器人鏟斗不變矩及改進BP網絡識別方法[J];東北大學學報(自然科學版);2012年03期
8 李鵬,朱宏輝;一種改進的不變矩方法在圖像目標識別中的應用[J];交通與計算機;2004年02期
9 吳晏,丁明躍,,彭嘉雄;基于圖像直方圖的一維不變矩研究[J];華中理工大學學報;1996年02期
10 季書芳;張森林;劉妹琴;;基于灰度和梯度不變矩的人臉識別[J];江南大學學報;2006年06期
相關會議論文 前6條
1 夏穎;戴曙光;蘇添發(fā);;基于不變矩匹配的車燈零件檢測[A];2007'儀表,自動化及先進集成技術大會論文集(二)[C];2007年
2 于洪偉;劉嘉敏;;不變矩特征在汽車標志圖像識別中的應用[A];2007北京地區(qū)高校研究生學術交流會通信與信息技術會議論文集(上冊)[C];2008年
3 肖本賢;陸誠;陳昊;余炎峰;陳榮保;;基于幀間差分法和不變矩特征的運動目標檢測與識別[A];第二十七屆中國控制會議論文集[C];2008年
4 林宏基;谷靈康;;基于小波不變矩和BPNN的智能監(jiān)控系統(tǒng)的圖像識別[A];第十三屆全國圖象圖形學學術會議論文集[C];2006年
5 葉大鵬;;基于曲線不變矩和2d-HMM的軸心軌跡自動識別系統(tǒng)[A];福建省科協(xié)第三屆學術年會裝備制造業(yè)專題學術年會論文集[C];2003年
6 梁文昭;蔡念;郭文婷;許少秋;;交通標志識別新方法[A];第十五屆全國圖象圖形學學術會議論文集[C];2010年
相關博士學位論文 前3條
1 王廷軍;礦山搜尋機器人視覺技術及井下礦工識別理論的研究[D];中國礦業(yè)大學(北京);2011年
2 劉進;不變量特征的構造及在目標識別中的應用[D];華中科技大學;2004年
3 左文明;脫機手寫中文簽名鑒別的研究[D];華南理工大學;2004年
相關碩士學位論文 前10條
1 耿海彪;基于不變矩紅外線指靜脈圖像的識別方法研究[D];昆明理工大學;2015年
2 孫朝陽;復雜環(huán)境下交通標志的檢測[D];山東大學;2015年
3 路鷹;不變矩穩(wěn)定性及在三維目標識別中的應用[D];華中科技大學;2007年
4 鐘志偉;不變矩的光照、模糊不變性及三維航天器的識別算法研究[D];南京航空航天大學;2013年
5 于曄;基于不變矩飛機型號識別方法研究與實現(xiàn)[D];電子科技大學;2009年
6 高璐琰;花類蒙草藥顯微特征點的不變矩分析[D];內蒙古農業(yè)大學;2008年
7 肖斌;基于不變矩的圖像幾何變換不變性識別研究[D];陜西師范大學;2007年
8 王海霞;基于不變矩的目標識別算法研究[D];中國科學院研究生院(長春光學精密機械與物理研究所);2004年
9 七十三;基于不變矩的細胞識別及初步應用研究[D];內蒙古農業(yè)大學;2008年
10 周忠良;基于小波不變矩的圖像識別算法的研究[D];哈爾濱工程大學;2013年
本文編號:2417335
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2417335.html