懸索橋波形鋼腹板橫梁橋塔抗震性能研究
[Abstract]:Because of its excellent span ability, suspension bridge has become a very competitive bridge type in high intensity mountain highway long span bridge. However, the weight and stiffness of the traditional PC suspension bridge tower are both large, and it is easy to damage under the earthquake load, especially the calculation of the shear resistance of the beam is not easy to pass. The PC composite beam with corrugated steel web plate has the advantages of light weight, small stiffness, high shear capacity and small internal force response under earthquake load, which is more suitable for the stress requirement of the tower beam of suspension bridge in high intensity area. However, the seismic behavior of PC composite beams with corrugated steel webs has hardly been studied in the application of suspension bridge tower beams. Therefore, it is necessary to study the stress characteristics of this structure under earthquake load. The research contents and results are as follows: taking a single span steel truss suspension bridge as the engineering background, the effect of longitudinal damper at the connection between stiffened beam and tower is considered. Based on the interaction between pile and soil, the finite element model of suspension bridge is established. Two beams, three beams, four beams, three different beam schemes are drawn up, each of which is divided into two types: PC composite beam with corrugated steel webs and PC box girder. There are six different tower models. Time history analysis method is used to calculate the internal force response of different beam types and the number of beams under earthquake load. In this paper, three beams with optimum internal force response under earthquake load are selected, and the yield moment of the upper, middle and lower beams of the bridge tower is analyzed by using the cross-section seismic analysis software XTRACT. Combined with the internal force response of the tower under different load conditions of the same model, the ultimate bearing capacity and failure process of the PC composite crossbeam tower with corrugated steel webs and the PC box girder bridge tower are compared. By using finite element software ANSYS, six models with different thickness and width / span ratio of roof and bottom plate are established, and the shear lag coefficient of top and bottom plate is calculated. By comparing and analyzing the magnitude and distribution of shear lag coefficient, the influence of geometric structure on shear lag coefficient of PC composite beam with corrugated steel web plate is understood, and the finite element calculation results are checked with the test data of strain gauge in construction site. The results show that under the same earthquake load, the most unfavorable bending moment and shear force of the PC composite beam tower with corrugated steel web are obviously smaller than those of the PC beam tower. With the increase of the number of bridge tower beams, the most unfavorable moment and shear force of the middle beam increase gradually, the most unfavorable moment and shear force of the upper beam gradually decrease. Corrugated steel web PC composite beam tower can increase the initial failure load strength of the tower compared with the common PC beam tower and effectively improve the ultimate seismic bearing capacity of the tower. The larger the thickness of the top and bottom plate of the PC composite beam with corrugated steel web, the more average the shear lag effect curve is. The shear lag coefficient of the lateral web region increases rapidly with the increase of the beam width, and the shear lag coefficient of the inner web region decreases with the increase of the beam width.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U442.55;U448.25
【參考文獻】
相關(guān)期刊論文 前10條
1 艾慶華;王東升;向敏;;基于纖維單元的鋼筋混凝土橋墩地震損傷評價[J];計算力學(xué)學(xué)報;2011年05期
2 徐艷;George C Lee;;Traveling wave effect on the seismic response of a steel arch bridge subjected to near fault ground motions[J];Earthquake Engineering and Engineering Vibration;2007年03期
3 郭彥林;張慶林;;波折腹板工形構(gòu)件截面承載力設(shè)計方法[J];建筑科學(xué)與工程學(xué)報;2006年04期
4 陳道政,劉先明,葉正強,葉繼紅,李愛群;大跨度空間網(wǎng)格結(jié)構(gòu)多點輸入反應(yīng)譜計算方法的研究[J];應(yīng)用力學(xué)學(xué)報;2005年03期
5 李忠獻,黃健,丁陽,史志利;不同地震激勵下大跨度斜拉橋的地震反應(yīng)分析[J];中國公路學(xué)報;2005年03期
6 曹一山,朱f^;一種評價橋梁結(jié)構(gòu)抗震性能的簡化方法[J];北方交通大學(xué)學(xué)報;2004年04期
7 宋建永,張樹仁,呂建鳴;波紋鋼腹板剪切屈曲分析中初始缺陷的模擬和影響程度分析[J];公路交通科技;2004年05期
8 陳常松,顏東煌,陳政清,涂光亞,田仲初;混凝土振弦式應(yīng)變計測試技術(shù)研究[J];中國公路學(xué)報;2004年01期
9 王福敏,周長曉,張長青;波形腹板箱梁鋼腹板穩(wěn)定試驗研究[J];公路交通技術(shù);2003年05期
10 孫建梅 ,葉繼紅 ,程文p<;多點輸入反應(yīng)譜方法的簡化[J];東南大學(xué)學(xué)報(自然科學(xué)版);2003年05期
相關(guān)會議論文 前1條
1 王力;梁志遠(yuǎn);張航;邸暉;董慶園;;某工程任意截面柱的實用設(shè)計方法討論[A];鋼結(jié)構(gòu)工程研究(十)——中國鋼結(jié)構(gòu)協(xié)會結(jié)構(gòu)穩(wěn)定與疲勞分會第14屆(ISSF-2014)學(xué)術(shù)交流會暨教學(xué)研討會論文集[C];2014年
相關(guān)博士學(xué)位論文 前2條
1 李杰;自錨式懸索橋地震非線性時程響應(yīng)分析和簡化方法研究[D];西南交通大學(xué);2007年
2 吳文清;波形鋼腹板組合箱梁剪力滯效應(yīng)問題研究[D];東南大學(xué);2002年
相關(guān)碩士學(xué)位論文 前4條
1 張耀月;大跨度斜拉橋地震響應(yīng)分析[D];北京交通大學(xué);2014年
2 朱永;懸索橋索塔橫系梁延性抗震性能計算分析[D];重慶交通大學(xué);2013年
3 張夢龍;高烈度地區(qū)懸索橋主塔的橫梁結(jié)構(gòu)形式對抗震性能影響的研究[D];重慶交通大學(xué);2012年
4 劉濤濤;橋墩延性抗震設(shè)計的安全性評價[D];西南交通大學(xué);2011年
,本文編號:2406420
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2406420.html