基于生存分析的通勤行為出發(fā)時間研究
[Abstract]:Commuting is not only a high proportion of daily travel behavior of urban residents, but also one of the most basic and important behaviors. Especially in the rush hour and area of commuting concentration, traffic congestion of early and late commuting is easy to be induced. The departure time of commuting behavior is an important parameter to reflect the time and space distribution of commuting traffic, so it is necessary to study it deeply. This paper takes "departure time of commuting behavior" as the starting point, and considers the influence factors of commute behavior departure time from the angle of individual. In this paper, the commuter travel behavior data are obtained by questionnaire survey. Based on the survival analysis theory, many factors affecting the commuters' departure time are extracted, and some links, such as variable selection, model assumption condition selection, etc. The Cox risk model of commuting behavior departure time is established. According to the regression results of the model, the specific effect of each variable on the commuting behavior departure time is obtained, and the choice of individual departure time is predicted by the model. The main contents of this paper are as follows: (1) the general distribution of commuting behavior departure time. Based on the questionnaire data, the survival function and risk function of commuting behavior were estimated by the nonparametric method of survival analysis. To explore the general distribution of commuting departure time. (2) the Cox risk model of commuting behavior departure time and the analysis of its influencing factors. The applicability of Cox proportional risk model for the study of commuting behavior departure time was discussed. The Cox risk model of commuting behavior departure time was established. After the possible factors were screened, the sex, age and occupation were determined. Whether to send students to school, travel distance, travel mode, public transportation service quality and individual motorized traffic service quality all have significant effects on commuting departure time. (3) based on the family characteristics of commuters, The Cox risk model is used to predict the departure time of commuting behavior. The results show that the model is more predictable and can accurately predict the departure time of commuting behavior. The research in this paper enriches the existing research on commuting behavior departure time at the individual level and can provide the theoretical basis for the formulation of traffic guidance measures and traffic management control measures.
【學位授予單位】:長安大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:U491
【參考文獻】
相關期刊論文 前10條
1 侯現(xiàn)耀;陳學武;曾雋;;公交出行信息條件下出行者通勤出發(fā)時間選擇影響因素[J];東南大學學報(自然科學版);2016年04期
2 欒琨;傅忠寧;雋志才;;有限理性下個體出發(fā)時間選擇行為研究[J];交通運輸系統(tǒng)工程與信息;2016年01期
3 張智勇;郝曉云;王東;鞏建;王達;;北京市信號交叉口行人過街忍耐時間研究[J];交通信息與安全;2015年04期
4 陳梓烽;柴彥威;;通勤時空彈性對居民通勤出發(fā)時間決策的影響——以北京上地—清河地區(qū)為例[J];城市發(fā)展研究;2014年12期
5 吳文靜;羅清玉;賈洪飛;;基于競爭風險模型的居民活動-出行計劃研究[J];交通運輸系統(tǒng)工程與信息;2014年06期
6 宗芳;雋志才;賈廣輝;;基于離散-連續(xù)選擇模型的通勤出行時間預測[J];系統(tǒng)工程理論與實踐;2013年10期
7 尚山山;錢大琳;;基于生存分析的小汽車通勤者出發(fā)時刻研究[J];武漢理工大學學報(交通科學與工程版);2013年05期
8 張春勤;姜桂艷;吳正言;;機動車出行者出發(fā)時間選擇的影響因素[J];吉林大學學報(工學版);2013年03期
9 楊小寶;周映雪;;交通擁堵持續(xù)時間的非參數(shù)生存分析[J];北京交通大學學報;2013年02期
10 張波;雋志才;林徐勛;;基于累積前景理論的出發(fā)時間選擇SDUO模型[J];管理工程學報;2013年01期
相關博士學位論文 前2條
1 環(huán)梅;基于生存分析的信號交叉口非機動車穿越行為研究[D];北京交通大學;2014年
2 李樹生;生存模型的理論及應用研究[D];南開大學;2010年
相關碩士學位論文 前9條
1 蔣利霞;基于生存分析和離散選擇模型的行人過街安全研究[D];重慶大學;2015年
2 李明;基于風險模型的城市居民購物出發(fā)時間分布規(guī)律分析[D];北京交通大學;2015年
3 徐奧林;基于出行者特性的出行行為研究[D];北京交通大學;2014年
4 樊海博;基于NestedLogit的小汽車通勤出行轉移模型研究[D];北京交通大學;2014年
5 吉芳芳;小汽車通勤出行方式向公共交通轉移模型研究[D];北京交通大學;2014年
6 林仁鑫;加速失效時間模型下失效原因缺失的競爭風險數(shù)據(jù)的統(tǒng)計推斷方法[D];復旦大學;2013年
7 王彪;考慮主觀不確定性的出行選擇行為研究[D];大連理工大學;2013年
8 姜玲;城市交通出行時間波動性的價值評估研究[D];南京理工大學;2013年
9 張琳;基于多成本分析的出發(fā)時刻選擇決策模型研究[D];哈爾濱工業(yè)大學;2011年
,本文編號:2399629
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2399629.html