基于Kalman濾波的高速公路交通流實(shí)時(shí)狀態(tài)估計(jì)方法研究
[Abstract]:In recent years, with the continuous improvement of social and economic level, the highway in China has a rapid development, which plays an important role in the social and economic activities. However, frequent highway traffic accidents also bring huge economic losses to the social economy. To grasp and estimate the state of expressway traffic flow quickly and accurately is of great significance for making reasonable and effective expressway management and control strategy, which is helpful to alleviate the traffic congestion and improve the safety of expressway. However, due to the limited detection equipment can not provide the highway traffic operation state, so this paper relies on the National Natural Science Foundation project "Highway speed discrete characteristics," The research on mechanism and control method "and Nanjing Science and Technology Bureau project" Expressway Traffic flow State estimation and Safety early warning system ", based on the measured data, the spatial-temporal correlation characteristics of continuous multi-section traffic flow parameters of expressway are deeply studied. By establishing the real-time state estimation method of freeway traffic flow based on Kalman filter, the real-time estimation of the traffic flow in the blind area of highway detection is carried out in real time, which provides the theoretical basis and technical support for the formulation of efficient expressway management and control strategy. Firstly, based on the measured data, the spatial-temporal correlation coefficient of traffic flow parameters is introduced to analyze the temporal and spatial correlation of traffic flow parameters of multi-section continuous detector in freeway. It provides a data basis for the traffic flow state estimation in the following blind areas, and determines the length of the road segment estimated by the following model state. Secondly, the actual estimation effect of different macroscopic traffic flow models is studied. The parameters of different macroscopic traffic flow models are calibrated online by genetic algorithm, and the calibrated models are applied to estimate the state of sections with strong temporal and spatial correlation. The optimal traffic flow model of traffic flow state estimation is selected. At the same time, the sensitivity of the model parameters is analyzed. The relationship between the accuracy of the model and the detection interval and the distance between the sections is discussed. Finally, the Jiang-Zhu-Wu model is selected as the traffic flow state estimation model, in which the free flow velocity and the congestion propagation velocity are the key parameters of the model. The model has the best effect when the detection interval is 30s and the partition distance is 800m. Thirdly, based on the principle of "Recursion-Estimator-Correction" of Kalman filter, the traffic flow state estimation models based on extended Kalman filter and unscented Kalman filter are constructed, and the steps of state estimation are given. Finally, the traffic flow state estimation model is applied to the traffic flow estimation model based on the measured data and its effect is evaluated, including the tracking ability of the two state estimation models to the sudden change of the traffic flow state, the comparative analysis of the state estimation error, and so on. At the same time, the effect of traffic flow state estimation model under different detector layout schemes is discussed, the error of different layout schemes is given, and the reference basis for detector layout is provided.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:U491.112
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉智平;王鳳群;單剛;;交通流狀態(tài)辨識(shí)系統(tǒng)集成研究[J];科技導(dǎo)報(bào);2007年22期
2 王雷;周小路;熊志金;;智能運(yùn)輸系統(tǒng)中交通流狀態(tài)辨識(shí)算法研究[J];交通與運(yùn)輸(學(xué)術(shù)版);2008年01期
3 董春嬌;邵春福;謝坤;李慧軒;;道路網(wǎng)交通流狀態(tài)變化趨勢(shì)判別方法[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年09期
4 何海燕;;交通流狀態(tài)辨識(shí)系統(tǒng)框架分析[J];現(xiàn)代商貿(mào)工業(yè);2013年04期
5 吳兵,周聞鈞,張維東;利用數(shù)據(jù)挖掘技術(shù)建立城市區(qū)域交通流狀態(tài)分析預(yù)測(cè)模型[J];公路交通技術(shù);2003年01期
6 張敬磊;王曉原;;交通流狀態(tài)辨識(shí)小波算法研究[J];武漢理工大學(xué)學(xué)報(bào)(交通科學(xué)與工程版);2006年05期
7 王輝;王孝坤;王權(quán);;一種交通流狀態(tài)智能推理系統(tǒng)[J];系統(tǒng)工程;2007年12期
8 姜ei聞;羅霞;;應(yīng)用支持向量機(jī)的交通流狀態(tài)預(yù)測(cè)方法研究[J];西南民族大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年04期
9 蔣銳;郭忠印;孔令旗;;高密度交通流狀態(tài)下行車(chē)安全性分析[J];交通信息與安全;2009年04期
10 徐琳;曲仕茹;;基于數(shù)據(jù)流挖掘的交通流狀態(tài)辨識(shí)方法研究[J];西北工業(yè)大學(xué)學(xué)報(bào);2011年01期
相關(guān)會(huì)議論文 前1條
1 汪凌;;一種基于知識(shí)的城市交通流狀態(tài)快速識(shí)別方法及應(yīng)用[A];第八屆中國(guó)智能交通年會(huì)論文集[C];2013年
相關(guān)博士學(xué)位論文 前1條
1 張生;拉格朗日體系下高速公路網(wǎng)監(jiān)控方法研究[D];長(zhǎng)沙理工大學(xué);2014年
相關(guān)碩士學(xué)位論文 前7條
1 楊萬(wàn)波;基于Kalman濾波的高速公路交通流實(shí)時(shí)狀態(tài)估計(jì)方法研究[D];東南大學(xué);2015年
2 李維;冰雪條件下城市道路網(wǎng)交通流狀態(tài)演變研究[D];哈爾濱工業(yè)大學(xué);2010年
3 齊龍濤;基于粒子濾波的交通流狀態(tài)預(yù)測(cè)及其優(yōu)化研究[D];北京交通大學(xué);2011年
4 劉衛(wèi)錚;基于大車(chē)混入率的交通流狀態(tài)安全性研究[D];河北工業(yè)大學(xué);2007年
5 劉海紅;交通流狀態(tài)非參數(shù)辨識(shí)關(guān)鍵理論及方法研究[D];山東理工大學(xué);2007年
6 胡功宏;高速公路交通流狀態(tài)安全性評(píng)價(jià)與對(duì)策研究[D];重慶交通大學(xué);2008年
7 張敬磊;基于數(shù)據(jù)挖掘的交通流狀態(tài)辨識(shí)算法研究[D];山東理工大學(xué);2006年
,本文編號(hào):2397117
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2397117.html