基于高密度數(shù)據(jù)和聚類分析的獨(dú)立車轍識(shí)別和評(píng)價(jià)
[Abstract]:JTG H20-2007, the current standard for evaluation of highway technical status, takes the average value of rutting detection within a certain length as the rut evaluation value, and the mean value will have a smoothing effect on the actual rut depth. In order to quantify the error of the current rut evaluation method, fully excavate the data of high density detection, evaluate the rut more accurately and define the independent rut. An independent rut recognition and evaluation method based on high density data and cluster analysis is proposed. The results of identifying independent ruts with different data densities are studied, and the validity and accuracy of the proposed method for identifying and evaluating the severity, distribution and location of independent ruts are illustrated by using the actual automatic rutting detection data of 1km and 20km. The results are compared with the results obtained by the current rutting evaluation method, and the errors of the two results are quantified. The results show that the proposed method is suitable for all the data of high-density rutting detection at equal intervals, but the evaluation results obtained by using 1km rutting depth average method in current codes can no longer accurately reflect the severity and location of ruts. Using the proposed method, three independent ruts can be found, and their position and severity can be determined. The evaluation results of the independent ruts are more accurate than those of the current standard ruts. In 20km section, only 25.1% ruts are identified by using the current rut evaluation method, and only 18.52% ruts can correctly judge the severity. By using the proposed method, all ruts can be identified, and the correct rate of judging the severity of rutting is 82.3%. The results show that the 1km rutting depth averaging method is not suitable for the rutting evaluation with uneven distribution, and the higher the rutting severity is, the greater the uneven distribution degree is and the greater the evaluation error is.
【作者單位】: 長安大學(xué)公路學(xué)院;
【基金】:國家自然科學(xué)基金項(xiàng)目(51508034) 陜西省交通運(yùn)輸科技項(xiàng)目(12-15K) 內(nèi)蒙古自治區(qū)交通運(yùn)輸科技項(xiàng)目(NJ-2015-31) 中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(310821153104,310821151006)
【分類號(hào)】:U418.68
【參考文獻(xiàn)】
相關(guān)期刊論文 前4條
1 車法;陳拴發(fā);馬慶雷;李洪印;;重載路面車轍評(píng)價(jià)物元模型構(gòu)建及應(yīng)用[J];廣西大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年04期
2 萬成;張肖寧;王紹懷;;RLWT車轍儀車轍評(píng)價(jià)及應(yīng)用研究[J];筑路機(jī)械與施工機(jī)械化;2007年12期
3 侯相深;馬松林;王彩霞;;基于行車安全的瀝青路面車轍測(cè)量與評(píng)價(jià)指標(biāo)的研究[J];公路交通科技;2006年08期
4 武建民,伍石生;瀝青路面長期使用性能指標(biāo)[J];長安大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年03期
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李會(huì)勛;;路基回彈模量對(duì)瀝青路面結(jié)構(gòu)設(shè)計(jì)的影響分析[J];交通世界;2016年32期
2 惠冰;李甜甜;王迪;;檢測(cè)車輛橫向偏移對(duì)車轍深度計(jì)算誤差分析[J];長安大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年03期
3 盧超;蔣龍松;劉化學(xué);;基于LCCA的瀝青路面養(yǎng)護(hù)決策及處治方案研究[J];路基工程;2016年01期
4 汪勇;吳麗霞;蔡明;;基于熵權(quán)模糊物元的軌道交通運(yùn)營安全評(píng)價(jià)[J];交通運(yùn)輸研究;2015年06期
5 黃偉業(yè);張亞t,
本文編號(hào):2372508
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2372508.html