天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 路橋論文 >

盾構(gòu)推進(jìn)電液系統(tǒng)動力學(xué)特性及軌跡實時精確控制研究

發(fā)布時間:2018-12-09 16:37
【摘要】:盾構(gòu)機(jī)是一種用于隧道建設(shè)的掘進(jìn)裝備,集成了刀盤切削、推進(jìn)控制、管片拼裝、導(dǎo)向測量等功能。面對復(fù)雜地質(zhì)與諸多不可預(yù)測的因素,施工時會出現(xiàn)掘進(jìn)調(diào)節(jié)失當(dāng),引起開挖面失穩(wěn)、軸線偏離等問題,嚴(yán)重時會導(dǎo)致地面變形、建筑物倒塌等事故。安全、高效的掘進(jìn)是隧道施工的突出問題。本文研究了盾構(gòu)推進(jìn)系統(tǒng)的動力學(xué)特性以及突變載荷下軌跡控制方法,目的是提高掘進(jìn)安全性與隧道成型質(zhì)量,具有工程應(yīng)用背景與科學(xué)研究價值。本學(xué)位論文創(chuàng)建了盾構(gòu)推進(jìn)系統(tǒng)的動力學(xué)模型,揭示了推進(jìn)力與盾構(gòu)姿態(tài)控制的多變量非線性耦合關(guān)系,進(jìn)而提出一種盾構(gòu)軌跡誤差實時精確控制方法。該方法有兩個特點(diǎn):第一是具有良好的推進(jìn)力動態(tài)調(diào)節(jié)性能,現(xiàn)有的壓力動態(tài)控制研究采用的是伺服閥,目前尚無采用比例壓力閥進(jìn)行動態(tài)控制的相關(guān)研究,本文提出了一種適用于盾構(gòu)的降階壓力調(diào)節(jié)系統(tǒng),實現(xiàn)了自適應(yīng)魯棒控制在該降階系統(tǒng)下的前饋?zhàn)饔靡约皡?shù)自適應(yīng)調(diào)節(jié),提高了壓力調(diào)節(jié)頻響并實現(xiàn)快速跟蹤。經(jīng)典的方法對振幅1.5MPa的1Hz正弦壓力跟蹤控制,產(chǎn)生了約30。相位滯后以及20%的幅值衰減,而本文提出的新型壓力控制算法能顯著減少上述動態(tài)缺陷所帶來的滯后誤差。第二是具有適應(yīng)突變載荷的速度自穩(wěn)定性能,通過研究突變載荷對推進(jìn)速度之間的影響,揭示現(xiàn)有控制方法下推進(jìn)速度波動的主因是未考慮盾體摩擦力的變化,本文提出把盾體摩擦力作為動態(tài)變量,建立了盾體摩擦力LuGre模型并充分考慮低速區(qū)域的Strebeck線性效應(yīng),較為準(zhǔn)確地對摩擦力變化進(jìn)行預(yù)估補(bǔ)償控制,有效降低由突變載荷造成的速度波動,最高位置控制精度達(dá)到0.2mm。本文所提的軌跡誤差控制方法適用于三維軌跡規(guī)劃及誤差動力學(xué),能使掘進(jìn)軌跡在地下三維空間內(nèi)無超調(diào)地收斂于給定軌跡,與二維軌跡規(guī)劃及控制的傳統(tǒng)方法相比,極大地提高了軌跡跟蹤精度及效率,同時可避免糾偏過程中載荷變化或調(diào)節(jié)滯后引起的蛇形軌跡,為盾構(gòu)掘進(jìn)的自動化提供了參考依據(jù)。此外,提出一種仿真與實驗結(jié)合的斷面異質(zhì)工況分布載荷的交互式模擬方法,該方法實現(xiàn)負(fù)載仿真模型與推進(jìn)實驗臺控制系統(tǒng)進(jìn)行數(shù)據(jù)交換與同步計算,可為推進(jìn)電液系統(tǒng)工況模擬提供交互式動態(tài)載荷,并構(gòu)建了用于盾構(gòu)推進(jìn)系統(tǒng)試驗的地層模擬液壓多模式加載試驗臺,具有主動/被動負(fù)載加載以及力/速度復(fù)合加載功能,提高了實驗系統(tǒng)的地層模擬性能。全文結(jié)構(gòu)如下:第一章對國內(nèi)外的業(yè)界現(xiàn)狀以及學(xué)界的研究現(xiàn)狀作概要介紹,分析了現(xiàn)有研究的一些不足,引入本文的研究重點(diǎn),即推進(jìn)力、推進(jìn)速度、以及掘進(jìn)軌跡控制方法研究。第二章針對現(xiàn)有的兩種典型的推進(jìn)電液系統(tǒng),即溢流閥調(diào)節(jié)型系統(tǒng)以及減壓閥調(diào)節(jié)型系統(tǒng)作介紹,分析其工作原理以及結(jié)構(gòu)特點(diǎn),并通過典型工況闡述了兩套系統(tǒng)的不同的調(diào)節(jié)方法。針對系統(tǒng)的關(guān)鍵調(diào)節(jié)元件——比例壓力閥、比例調(diào)速閥進(jìn)行了數(shù)學(xué)建模,通過模型分析了其穩(wěn)態(tài)及動態(tài)工作特點(diǎn);隨后通過AMESim軟件對兩套系統(tǒng)進(jìn)行建模,并對斷面異質(zhì)的掘進(jìn)工況進(jìn)行了仿真分析,仿真結(jié)果表明溢流閥調(diào)節(jié)型系統(tǒng)具有更良好的調(diào)節(jié)性能,受地層變化影響較小。第三章介紹了盾構(gòu)推進(jìn)電液系統(tǒng)綜合試驗臺,包括試驗臺的機(jī)械結(jié)構(gòu)、推進(jìn)系統(tǒng)、加載系統(tǒng)的組成,自動控制模塊以及電氣系統(tǒng)。第四章是推進(jìn)力控制及推進(jìn)速度的控制方法研究。對于推進(jìn)力控制方法,給出了壓力調(diào)節(jié)的降階段系統(tǒng)自適應(yīng)魯棒算法的實現(xiàn),由仿真與實驗結(jié)果表明控制效果優(yōu)于經(jīng)典的死區(qū)階躍補(bǔ)償控制以及比例積分控制,其跟蹤正弦的效果基本沒有相位滯后及幅值衰減,很大地提高了壓力控制的動態(tài)性能。對于速度控制方法,建立了具有LuGre模型的盾構(gòu)動力學(xué)模型,設(shè)計了適應(yīng)突變載荷的速度控制器,并通過施工中常用的提速調(diào)節(jié)以及降速調(diào)節(jié)的仿真與實驗驗證了其有效性。第五章研究了盾構(gòu)機(jī)的三維坐標(biāo)軌跡控制,建立了盾構(gòu)機(jī)動力學(xué)模型以及誤差動力學(xué)模型,是一個多變量耦合的非線性多輸入多輸出模型。軌跡控制設(shè)計方法分為三步,第一步是設(shè)計虛擬輸入使三維坐標(biāo)誤差漸進(jìn)收斂為零,第二步是設(shè)計使得實際輸入信號能收斂到所設(shè)計的虛擬輸入,第三步是考慮了未知擾動的控制器實現(xiàn)設(shè)計。隨后通過仿真研究說明控制器的有效性,并對其中對控制性能有顯著影響的設(shè)計參數(shù)進(jìn)行了研究。第六章給出了全文的研究結(jié)論,并討論未來工作展望。
[Abstract]:The shield machine is a kind of tunneling equipment for tunnel construction, and integrates the functions of cutting, pushing control, segment assembly, guide measurement and so on. In the face of complex geology and many unpredictable factors, there will be such problems as the failure of the excavation, the instability of the excavation surface, the deviation of the axis, etc., which can lead to the deformation of the ground and the collapse of the building. Safe and efficient tunneling is a prominent problem in tunnel construction. The dynamic characteristics of shield propulsion system and the method of trajectory control under sudden load are studied in this paper. The purpose of this paper is to improve the safety of driving and the quality of tunnel forming, and to have the background of engineering application and the value of scientific research. In this thesis, the dynamic model of shield propulsion system is established, and the multi-variable nonlinear coupling relation of thrust and shield attitude control is revealed, and a real-time accurate control method for shield track error is proposed. The method has two characteristics: firstly, the first is a dynamic regulation performance with good thrust force, the existing pressure dynamic control research adopts a servo valve, In this paper, a reducing-order pressure regulation system for shield is proposed, and the feed-forward function and the parameter self-adaptive adjustment of the adaptive robust control under the order-reducing system are realized, and the frequency response of the pressure regulation is improved and the rapid tracking is realized. The classical method control the amplitude of 1. 5MPa of the sinusoidal pressure of 1Hz, resulting in about 30. The phase lag and the attenuation of the amplitude of 20%, the new pressure control algorithm proposed in this paper can significantly reduce the lag error caused by the above dynamic defects. The second is the speed self-stability of the adaptive mutation load, and by studying the influence of the abrupt load on the propulsion speed, it is revealed that the main reason for the speed fluctuation under the current control method is not to consider the change of the friction of the shield body, and the friction force of the shield body is used as the dynamic variable, The LuGre model of the shield body is established and the Strebbeck linear effect of the low-speed region is fully considered, and the compensation control for the change of the friction force is carried out more accurately, and the speed fluctuation caused by the abrupt load is effectively reduced, and the control accuracy of the highest position is 0.2mm. The trajectory error control method disclosed by the invention is suitable for the three-dimensional trajectory planning and the error dynamics, can enable the tunneling track to converge in a given track in the underground three-dimensional space, and greatly improves the track tracking precision and the efficiency compared with the traditional method of the two-dimensional trajectory planning and control, and meanwhile, the snake track caused by the load change or the adjustment lag in the deviation correction process can be avoided, and the reference basis is provided for the automation of the shield tunneling. in addition, an interactive simulation method for simulating the distribution load of a cross-section heterogeneous working condition in combination with an experiment is provided, and the formation simulation hydraulic multi-mode loading test bed for the test of the shield propulsion system is constructed, has the active/ passive load loading and the force/ speed composite loading function, and improves the formation simulation performance of the experimental system. The structure of the full text is as follows: The first chapter gives a brief introduction to the current situation of the industry and the current research situation of the academic circle, and analyzes some shortcomings of the existing research, and introduces the research focus of this paper, namely, the propulsive force, the propulsion speed, and the method of control of the driving track. The second chapter introduces the existing two typical propulsion electro-hydraulic systems, namely the relief valve adjusting type system and the pressure reducing valve adjusting type system, analyzes the working principle and the structural characteristics, and expounds the different adjusting methods of the two systems through the typical working conditions. Based on the mathematical modeling of the key adjusting element _ proportional pressure valve and the proportional speed-regulating valve of the system, the steady and dynamic working characteristics of the system are analyzed through the model, and the two sets of systems are modeled by AMESim software, and the driving conditions of the cross section are simulated and analyzed. The simulation results show that the relief valve adjusting system has better regulation performance and is less affected by the formation change. The third chapter introduces the integrated test bed of the shield propulsion electro-hydraulic system, including the mechanical structure of the test bed, the propulsion system, the composition of the loading system, the automatic control module and the electrical system. The fourth chapter is the control method of propulsion control and propulsion speed. For the control method of thrust force, the realization of the self-adaptive Rurod algorithm for pressure regulation is given, and the simulation and experimental results show that the control effect is better than the classical dead zone step compensation control and proportional integral control. The tracking sine effect basically has no phase lag and amplitude value attenuation, and the dynamic performance of the pressure control is greatly improved. In the method of speed control, a shield dynamics model with LuGre model is established, the speed controller is designed to adapt to the sudden load, and the effectiveness is verified by simulation and experiment of speed-increasing regulation and speed-reduction regulation commonly used in the construction. In the fifth chapter, the three-dimensional coordinate trajectory control of the shield machine is studied, the dynamic model of the shield machine and the model of the error dynamics are established, which is a multi-variable coupled nonlinear multi-input multi-output model. The design method of the trajectory control is divided into three steps. The first step is to design the virtual input so that the three-dimensional coordinate error gradually converges to zero, and the second step is that the actual input signal can be converged to the designed virtual input, and the third step is to design the controller which takes into account the unknown disturbance. The effectiveness of the controller is then explained by the simulation study, and the design parameters which have a significant effect on the control performance are studied. The sixth chapter gives the research conclusion of the full text, and discusses the prospect of future work.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:U455.39

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王如路;蔡軼曼;劉建航;;上海市軌道交通4號線盾構(gòu)隧道穿越地鐵運(yùn)營線路的監(jiān)護(hù)工程[J];地下工程與隧道;2004年03期

2 沈斌;“盾構(gòu)一號軟件”的開發(fā)研究[J];施工技術(shù);2005年06期

3 劉東亮;電液比例技術(shù)在盾構(gòu)推進(jìn)系統(tǒng)中的應(yīng)用[J];建筑機(jī)械;2005年08期

4 高俊強(qiáng),胡燦;盾構(gòu)推進(jìn)和地表沉降的變化關(guān)系探討[J];南京工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2005年04期

5 袁嘉,鄧玉軍;盾構(gòu)不能推進(jìn)的原因分析及處理方法[J];工程機(jī)械;2005年01期

6 管會生;高波;;盾構(gòu)切削刀具壽命的計算[J];工程機(jī)械;2006年01期

7 范偉;;盾構(gòu)隧道始發(fā)技術(shù)[J];科技情報開發(fā)與經(jīng)濟(jì);2006年02期

8 龔國芳;胡國良;楊華勇;;盾構(gòu)推進(jìn)系統(tǒng)同步協(xié)調(diào)控制實驗分析[J];液壓與氣動;2006年07期

9 朱合華;徐前衛(wèi);傅德明;廖少明;張冠軍;;地層適應(yīng)性盾構(gòu)模型試驗設(shè)計方法初探[J];巖土力學(xué);2006年09期

10 劉慧彬;;與世界最大直徑盾構(gòu)的親密接觸[J];建筑機(jī)械;2006年21期

相關(guān)會議論文 前10條

1 楊磊;孫連;;基于盾構(gòu)施工數(shù)據(jù)庫的盾構(gòu)動態(tài)設(shè)計數(shù)據(jù)分析方法研究[A];2011中國盾構(gòu)技術(shù)學(xué)術(shù)研討會論文集[C];2011年

2 沈斌;;“盾構(gòu)之星軟件”產(chǎn)品研究與開發(fā)技術(shù)綜述——盾構(gòu)姿態(tài)自動監(jiān)測的原理與方法[A];科技、工程與經(jīng)濟(jì)社會協(xié)調(diào)發(fā)展——中國科協(xié)第五屆青年學(xué)術(shù)年會論文集[C];2004年

3 朱繼文;;盾構(gòu)隧道與下立交長距離疊交工程設(shè)計施工技術(shù)[A];2010城市軌道交通關(guān)鍵技術(shù)論壇論文集[C];2010年

4 張志鵬;方江華;張智宏;;小半徑隧道中盾構(gòu)分體始發(fā)施工技術(shù)[A];2011中國盾構(gòu)技術(shù)學(xué)術(shù)研討會論文集[C];2011年

5 沈斌;;“盾構(gòu)之星軟件”研究與開發(fā)技術(shù)綜述——盾構(gòu)姿態(tài)自動監(jiān)測的原理與方法[A];全國城市地下空間學(xué)術(shù)交流會論文集[C];2004年

6 朱合華;徐前衛(wèi);廖少明;傅德明;張冠軍;;土體-盾構(gòu)機(jī)器系統(tǒng)的相似理論研究[A];2004年度上海市土力學(xué)與巖土工程學(xué)術(shù)年會論文集[C];2004年

7 方依文;李青林;王文治;鄭仔弟;;盾構(gòu)下穿城鐵線施工技術(shù)[A];北京市政第一屆地鐵與地下工程施工技術(shù)學(xué)術(shù)研討會論文集[C];2005年

8 龔國芳;胡國良;楊華勇;;盾構(gòu)推進(jìn)系統(tǒng)同步協(xié)調(diào)控制實驗分析[A];第四屆全國流體傳動與控制學(xué)術(shù)會議論文集[C];2006年

9 莊欠偉;龔國芳;楊華勇;;盾構(gòu)機(jī)推進(jìn)液壓系統(tǒng)比例壓力流量復(fù)合控制仿真[A];第四屆全國流體傳動與控制學(xué)術(shù)會議論文集[C];2006年

10 潘國榮;徐然;陳曉龍;;盾構(gòu)姿態(tài)可視化自動測量系統(tǒng)的開發(fā)與應(yīng)用[A];數(shù)字測繪與GIS技術(shù)應(yīng)用研討交流會論文集[C];2008年

相關(guān)重要報紙文章 前10條

1 章華平;上海大型盾構(gòu)長距離穿越淺覆蓋層[N];中國建設(shè)報;2009年

2 記者 李媛 通訊員 焦緒;為了讓盾構(gòu)在老街“足下”穿行[N];建筑時報;2009年

3 通訊員 馮玉平;十八局集團(tuán)四公司盾構(gòu)施工創(chuàng)“天津速度”[N];中國鐵道建筑報;2010年

4 本報記者 夏藝心 通訊員 孟娜;時刻以勞模標(biāo)準(zhǔn)為標(biāo)尺[N];中華建筑報;2010年

5 本報通訊員 劉健 高銳軒;“滴水不漏”穿越長湖[N];人民鐵道;2009年

6 記者  徐瑞哲;崇明隧道未動一土完成“彩排”[N];解放日報;2006年

7 記者白秀喜 通訊員高銳軒 劉健;我國最長湖底盾構(gòu)隧道貫通[N];中國建設(shè)報;2009年

8 記者 周煒;地鐵一號線盾構(gòu)昨開鉆[N];西安日報;2010年

9 記者 王蔚 通訊員 陳燁;11號線大直徑盾構(gòu)順利出洞[N];文匯報;2011年

10 本報記者 袁弘;寧愿地下苦 確保地面安[N];成都日報;2009年

相關(guān)博士學(xué)位論文 前3條

1 劉志斌;盾構(gòu)推進(jìn)電液系統(tǒng)動力學(xué)特性及軌跡實時精確控制研究[D];浙江大學(xué);2015年

2 矯偉剛;盾構(gòu)推進(jìn)對在建地鐵風(fēng)井或車站結(jié)構(gòu)的影響研究[D];中國礦業(yè)大學(xué)(北京);2012年

3 曹奕;軟土中盾構(gòu)隧道的長期非線性固結(jié)變形研究[D];浙江大學(xué);2014年

相關(guān)碩士學(xué)位論文 前10條

1 蘇守一;盾構(gòu)隧道穿越群房屋安全風(fēng)險研究[D];北京交通大學(xué);2012年

2 劉浩;盾構(gòu)直接切削大直徑樁基的刀具選型設(shè)計研究[D];北京交通大學(xué);2014年

3 張豐收;盾構(gòu)隧道探地雷達(dá)探測的介電特性試驗、數(shù)值模擬及應(yīng)用[D];同濟(jì)大學(xué);2007年

4 袁永盛;盾構(gòu)推進(jìn)機(jī)構(gòu)動力學(xué)分析與研究[D];華東交通大學(xué);2011年

5 何文龍;盾構(gòu)推進(jìn)對南京緯七路高架橋深大樁基影響的分析[D];南京林業(yè)大學(xué);2009年

6 鄧穎聰;盾構(gòu)推進(jìn)系統(tǒng)的分區(qū)建模與性能評價[D];上海交通大學(xué);2010年

7 田科;盾構(gòu)機(jī)液壓長管道振動模態(tài)分析與試驗研究[D];中南大學(xué);2011年

8 侯典清;盾構(gòu)推進(jìn)系統(tǒng)順應(yīng)特性及掘進(jìn)姿態(tài)控制研究[D];浙江大學(xué);2013年

9 丁晟;盾構(gòu)機(jī)回轉(zhuǎn)系統(tǒng)彎扭耦合及偏載效應(yīng)研究[D];上海交通大學(xué);2010年

10 季廣豐;軟土地層中盾構(gòu)推進(jìn)數(shù)值模擬[D];浙江大學(xué);2004年

,

本文編號:2369702

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2369702.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶8859a***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com