多塔自錨式懸索橋纜索系統(tǒng)施工過程分析研究
[Abstract]:The core process of construction control of multi-tower self-anchored suspension bridge is aerial cable erection and sling tension. During aerial cable erection, the alignment of aerial cable object changes due to the construction deviation of tower and cable system and environmental temperature during construction. The accuracy of the cable shape will directly affect the main cable shape of the bridge. If necessary, the method of adjusting the cable tension should be adopted to adjust the cable shape. Different from the main beam hoisting technology adopted by ground anchor suspension bridge, the stiffness of the main beam has been formed during the stretching process of the suspension cable of the self-anchored suspension bridge, and the main beam is more supported on the support, the sling force cannot be pulled to the design cable force at one time, and the reciprocating tension must be carried out. The cable tension process is accompanied by the saddle pushing, the tower and beam systems are highly coupled with the cable system, and the analysis and control are complicated. When drawing up a reasonable tensioning scheme, the safety and economy of construction should be considered synthetically, and the multi-objective factors such as bridge tower, main beam, slings stress state, the number of Jack and the number of connecting rod should be comprehensively compared and selected. In this paper, the finite element method is used to determine the reasonable state of self-anchored suspension bridge. The calculated results are in good agreement with the design. The maximum deviation of main cable shape is 15mm; the maximum deviation of sling force is 3; the deviation of main cable's unstressed length is 4 cm, and the length of main cable's unstressed cable is 0.8%; the maximum deviation of sling's unstressed cable length is 11mm. In this paper, the sensitivity of cable system, support system and ambient temperature during the erection of aerial cable of self-anchored suspension bridge is analyzed in detail, the structure rises and cools, the vertical construction deviation of main cable saddle and the vertical construction deviation of loose cable saddle are analyzed. The vertical and longitudinal construction deviations of anchor face are sensitive to the aerial cable shape. The influence coefficients of various factors on the vertical deformation of midspan in the side of aerial cable are given, and the modified calculation of aerial cable target alignment by fast table checking method is put forward, and an example is given to verify the effect of these factors on the vertical deformation of aerial cable. The adjustment amount of each span's stress-free length during the adjustment of aerial cable shape is given, which is convenient for the adjustment of aerial cable shape. According to the stress state of sling during construction, the stress state of bridge tower and main beam, the number of Jack, the number and specification of connecting rod, and the relative geometric position of main cable and cable saddle, the optimum tension scheme is determined to be temporary compression weight from the mid-span to the bridge tower. Aiming at the optimal tensioning scheme, the stress of the tower, the deflection of the tower top, the deformation of the main cable, the contact state of the cable saddle with the main cable and the change of the cable force during the construction period are analyzed in detail. The analysis shows that the scheme recommended in this paper meets the control requirements. The research in this paper has important reference and reference significance for the construction process control analysis of cable system of multi-tower self-anchored suspension bridge.
【學(xué)位授予單位】:長安大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U445.4;U448.25
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王曉明;賀拴海;段瑞芳;;空間索形自錨式懸索橋吊索張拉過程分析方法[J];工程力學(xué);2016年10期
2 王曉明;賀耀北;陳多;;空間索形懸索橋吊裝施工過程分析方法[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年07期
3 嚴(yán)琨;沈銳利;;基于細(xì)長梁單元的懸索橋主纜線形分析[J];計(jì)算力學(xué)學(xué)報(bào);2016年03期
4 李傳習(xí);柯紅軍;楊武;賀君;李紅利;;黃河桃花峪自錨式懸索橋體系轉(zhuǎn)換方案的比較研究[J];土木工程學(xué)報(bào);2014年09期
5 陳政清;;梁桿結(jié)構(gòu)幾何非線性有限元的數(shù)值實(shí)現(xiàn)方法[J];工程力學(xué);2014年06期
6 謝雪峰;羅喜恒;;基于ANSYS的懸索橋分析方法研究[J];中國工程科學(xué);2012年05期
7 齊東春;沈銳利;陳衛(wèi)國;唐茂林;;懸索橋結(jié)構(gòu)分析中鞍座單元的研究及應(yīng)用[J];橋梁建設(shè);2011年01期
8 羅喜恒;;基于撓度理論的三塔懸索橋參數(shù)分析[J];建筑結(jié)構(gòu);2008年09期
9 羅喜恒;韓大章;萬田保;;多塔懸索橋撓度理論及其程序?qū)崿F(xiàn)[J];橋梁建設(shè);2008年02期
10 沈銳利;王志誠;;自錨式懸索橋力學(xué)特性撓度理論研究[J];公路交通科技;2008年04期
相關(guān)會議論文 前3條
1 梅葵花;經(jīng)德良;黃平明;周昌棟;;懸索橋主纜溫度效應(yīng)的分析研究[A];中國公路學(xué)會橋梁和結(jié)構(gòu)工程學(xué)會2001年橋梁學(xué)術(shù)討論會論文集[C];2001年
2 戴正宏;徐君蘭;;懸索橋成橋主纜線形的確定[A];中國土木工程學(xué)會橋梁及結(jié)構(gòu)工程學(xué)會第十二屆年會論文集(上冊)[C];1996年
3 戴正宏;張勁泉;;懸索橋空纜線形計(jì)算與施工[A];中國土木工程學(xué)會橋梁及結(jié)構(gòu)工程學(xué)會第十二屆年會論文集(上冊)[C];1996年
相關(guān)博士學(xué)位論文 前2條
1 何為;大跨徑懸索橋施工監(jiān)控中若干問題的研究[D];浙江大學(xué);2006年
2 唐茂林;大跨度懸索橋空間幾何非線性分析與軟件開發(fā)[D];西南交通大學(xué);2003年
相關(guān)碩士學(xué)位論文 前1條
1 王曉明;空間索形自錨式懸索橋初始平衡狀態(tài)分析[D];長安大學(xué);2007年
,本文編號:2322385
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2322385.html