基于動(dòng)態(tài)模糊神經(jīng)網(wǎng)絡(luò)的交通信號(hào)智能控制研究
[Abstract]:Since the beginning of the 21st century, with the rapid development of our economy and science and technology, the number of cars on the roads has exploded, and the traffic congestion in cities has become more and more serious, which has caused further environmental pollution and energy waste. Traffic accidents and a series of problems, especially the haze weather to people a great deal of trouble. Urban traffic congestion mainly occurs at road intersections. Because of the unreasonable allocation of green time in the traditional traffic signal control mode at intersections, it sometimes causes unnecessary congestion. A reasonable control system has a profound impact on improving the traffic situation. In road traffic network, traffic flow is nonlinear, real-time and fickle. In view of this characteristic of traffic flow, intelligent control method can be applied to urban traffic signal control. This paper mainly studies the special five fork junctions and adjacent intersections in the city. The fuzzy system and neural network are combined into the traffic signal control, with the aim of reducing the average vehicle delay. Realize the rational allocation of green light time at five fork junctions. Firstly, the basic parameters of traffic signal control, the statistical distribution of traffic flow, the evaluation index system of traffic quality at road intersection and the detection of traffic flow are briefly introduced. Secondly, the fuzzy control is applied to the traffic signal control of the five bifurcations to realize the intelligent control of the five bifurcations. In the case of low peak period and peak period of traffic flow, the fuzzy control and timing control are used to simulate the five-fork intersection control, respectively. The simulation results show the advantages of fuzzy control. Thirdly, aiming at the problem of wasting green time and switching phase frequently in phase sequence control of traffic signal, the dynamic fuzzy neural network theory is introduced to realize multi-phase variable phase sequence dynamic control at five junctions. Taking the five fork junctions formed by Songzhou Road, Zhenxing Street and Linghuang Street in Chifeng as an example, the simulation study is carried out to verify the performance of the multi-phase variable phase sequence dynamic control method. Finally, the coordinated control of adjacent intersections is studied and analyzed. For the adjacent intersections with small distance from the middle section, the correlation is relatively strong. In the control, the influence of the traffic flow of the middle section entering and leaving the intersection on the green phase is considered. The simulation results show that the coordinated control is more reasonable than the common isolated intersection control.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U491.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張偉;肖日東;鄧晶;;基于遺傳算法的動(dòng)態(tài)模糊神經(jīng)網(wǎng)絡(luò)城市快速路入口匝道控制[J];公路交通科技;2017年02期
2 吳曉強(qiáng);黃云戰(zhàn);趙永杰;;基于模糊神經(jīng)網(wǎng)絡(luò)的溫室溫濕度智能控制系統(tǒng)研究[J];中國(guó)農(nóng)機(jī)化學(xué)報(bào);2016年04期
3 閆飛;田福禮;史忠科;;城市道路交叉口信號(hào)的魯棒迭代學(xué)習(xí)控制[J];中國(guó)公路學(xué)報(bào);2016年01期
4 慕飛飛;張惠珍;;基于遺傳算法的單點(diǎn)交叉口信號(hào)配時(shí)優(yōu)化[J];上海理工大學(xué)學(xué)報(bào);2015年06期
5 楊兆升;曲鑫;林賜云;邴其春;龔勃文;;考慮低排放低延誤的交通信號(hào)優(yōu)化方法[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年10期
6 錢偉;孫玉娟;;城市干線交通信號(hào)的模糊協(xié)調(diào)控制研究[J];河南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年05期
7 張鄰;吳偉明;黃選偉;;基于動(dòng)態(tài)信號(hào)配時(shí)的非線性規(guī)劃模型[J];公路交通科技;2014年08期
8 付華;李文娟;孟祥云;王桂花;王燦祥;;IGA-DFNN在瓦斯?jié)舛阮A(yù)測(cè)中的應(yīng)用[J];傳感技術(shù)學(xué)報(bào);2014年02期
9 游黃陽;許倫輝;;防止短連線交叉口溢流的單點(diǎn)信號(hào)配時(shí)優(yōu)化[J];系統(tǒng)工程理論與實(shí)踐;2014年01期
10 黃大榮;宋軍;李淑慶;向紅艷;;網(wǎng)絡(luò)化動(dòng)態(tài)調(diào)控下城市路網(wǎng)交通擁堵控制技術(shù)綜述[J];交通運(yùn)輸工程學(xué)報(bào);2013年05期
相關(guān)博士學(xué)位論文 前3條
1 葉寶林;城市路網(wǎng)交通信號(hào)協(xié)調(diào)控制理論與方法研究[D];浙江大學(xué);2015年
2 楊祖元;城市交通信號(hào)系統(tǒng)智能控制策略研究[D];重慶大學(xué);2008年
3 馬文閣;基于模糊控制的單交叉口信號(hào)控制方法與算法研究[D];大連海事大學(xué);2008年
相關(guān)碩士學(xué)位論文 前9條
1 陳姍;城市道路平面交叉口優(yōu)化設(shè)計(jì)與評(píng)價(jià)[D];長(zhǎng)安大學(xué);2015年
2 許森琪;基于動(dòng)態(tài)模糊神經(jīng)網(wǎng)絡(luò)的聚丙烯熔融指數(shù)預(yù)報(bào)建模優(yōu)化研究[D];浙江大學(xué);2015年
3 王t,
本文編號(hào):2306835
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2306835.html