活動(dòng)斷裂帶隧道內(nèi)軌道結(jié)構(gòu)振動(dòng)傳遞特性及結(jié)構(gòu)選型研究
[Abstract]:The mountains in southwest China are densely distributed and the ecological environment is fragile. In order to ensure the smooth running of the railway line and reduce the impact of train operation on the environment along the line, the railway passes through the area in the form of long tunnel. At the same time, there are many active fault zones in this area, which often involve railway tunnels crossing active faults. When the train passes through, the wheel / rail shock produces vibration and transmits to the tunnel structure. Under repeated action, the tunnel structure will produce cracks and continue to expand, and even lead to the overall failure of the tunnel structure when the damage reaches a certain extent. At the same time, the vibration propagates in the rock and soil, which will disturb the surrounding rock and soil, and promote the fault dislocation. Once the above diseases occur, the safety of railway lines and tunnel structures will be seriously threatened. In this paper, based on finite element theory and wheel-rail coupling dynamics theory, a series of static and dynamic studies are carried out on Cheng-Lan railway crossing active fault zone engineering. The purpose of this paper is to select suitable vibration absorption track for railway in active fault zone tunnel. Reduce the adverse effect of wheel / rail vibration. The main work and conclusions are as follows: (1) the spatial model of track-tunnel-active fault zone is established, and the pseudo-static method is used to simulate the fault dislocation process, and the deformation characteristics of track structure under fault dislocation are analyzed. The study shows that the ballastless track structure has similar staggered deformation under the condition of fault dislocation, and the seams appear between the base plate and the tunnel. When the fault slip momentum reaches 15mm, the maximum tensile stress of the track plate exceeds its tensile strength, resulting in failure. Under fault dislocation, ballastless track is superior to ballastless track in such aspects as stress state, track structure failure and line geometric configuration adjustment ability, etc. It is suggested that the ballasted track structure should be adopted in the active fault zone tunnel. (2) the coupled dynamic model of vehicle-ballasted track and tunnel is established, which starts from the aspects of driving safety and comfort, vibration absorption effect, etc. The influence of elastic sleeper and ballast cushion on the dynamic characteristics of the system is analyzed. The research shows that laying elastic sleeper or ballast cushion can ensure the safety and stability of the train, and the laying of elastic sleeper can obviously increase the vertical displacement of rail and sleeper, but it can significantly reduce the dynamic response of track bed. The displacement of track structure is increased and the working state of track bed is worsened by laying ballast cushion, and the elastic sleeper and ballast pad play a good damping effect, the maximum damping amount is 26 dB ~ 18 dB, respectively. Using elastic sleeper or ballast cushion can slow down the fault dislocation caused by train impact. (3) the stiffness of ballast cushion and the cushion under elastic sleeper are changed respectively, and the change of parameters on vehicle is analyzed. The influence of dynamic response and damping effect of track structure is presented, and the reasonable range of parameters is put forward. The principle of setting the parameters of damping cushion is to control the displacement, vibration and force of track structure without affecting its damping effect. Through the comparative analysis of the system, it is suggested that the stiffness of ballast cushion surface should be taken at 150 MN / m ~ (3). The stiffness of the cushion layer under the elastic sleeper is 40 ~ 60 mn / m ~ (-1). (4) A new idea of reducing vibration of the tunnel backfill layer using rubber concrete material is put forward, and the effect of the rubber concrete backfill layer on the dynamic response of vehicle and track structure is studied. The results show that the damping effect of rubber concrete backfill is obvious, and it is reflected in the whole frequency domain, and the maximum damping capacity of the lining is 10.3dB; The dynamic indexes of vehicle and track structure have little change before and after the backfill layer is used rubber concrete backfill layer will not aggravate the dynamic effect of wheel / rail and affect the driving safety.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:U213.21;U451
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 亓偉;李成輝;鄭建;劉玉濤;;Ⅲ型軌枕有砟軌道動(dòng)剛度特性研究[J];鐵道建筑;2016年12期
2 張迅;蘇斌;李小珍;;扣件剛度與阻尼對(duì)鐵路箱梁車(chē)致振動(dòng)噪聲的影響研究[J];振動(dòng)與沖擊;2015年15期
3 郄錄朝;王紅;許永賢;許良善;劉海濤;曾樹(shù)谷;;聚氨酯固化道床的力學(xué)性能試驗(yàn)研究[J];鐵道建筑;2015年01期
4 姜浩;趙坪銳;劉觀(guān);;減振型無(wú)砟軌道軌枕結(jié)構(gòu)對(duì)比分析[J];鐵道標(biāo)準(zhǔn)設(shè)計(jì);2014年10期
5 李學(xué)鋒;代志萍;谷雪影;曹自豪;;活斷層錯(cuò)動(dòng)位移下變形縫間距對(duì)隧道內(nèi)力的影響[J];隧道建設(shè);2014年03期
6 吳紹利;王鑫;吳智強(qiáng);陸方斌;;高速鐵路無(wú)砟軌道結(jié)構(gòu)病害類(lèi)型及快速維修方法[J];中國(guó)鐵路;2013年01期
7 劉學(xué)增;林亮倫;桑運(yùn)龍;;逆斷層粘滑錯(cuò)動(dòng)對(duì)公路隧道的影響[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年07期
8 汪夢(mèng)甫;宋興禹;;高阻尼混凝土構(gòu)件阻尼性能研究[J];振動(dòng)與沖擊;2012年11期
9 李林;何川;耿萍;曹東杰;;隧道穿越高烈度地震區(qū)斷層帶圍巖地震響應(yīng)分析[J];重慶大學(xué)學(xué)報(bào);2012年06期
10 張斌;劉林芽;邵文杰;甘慧慧;;高速鐵路車(chē)輪減振降噪優(yōu)化方法[J];環(huán)境工程;2012年S1期
相關(guān)博士學(xué)位論文 前6條
1 袁立群;列車(chē)荷載作用下馬蹄形地鐵隧道—地裂縫—地層動(dòng)力相互作用研究[D];長(zhǎng)安大學(xué);2014年
2 劉洪佳;隱伏地裂縫作用下的盾構(gòu)隧道變形破壞機(jī)制及力學(xué)模型研究[D];長(zhǎng)安大學(xué);2012年
3 李凱玲;地裂縫環(huán)境下地鐵隧道—圍巖相互作用研究[D];長(zhǎng)安大學(xué);2012年
4 耿萍;鐵路隧道抗震計(jì)算方法研究[D];西南交通大學(xué);2012年
5 劉妮娜;地裂縫環(huán)境下的地鐵隧道—地層地震動(dòng)力相互作用研究[D];長(zhǎng)安大學(xué);2010年
6 申躍奎;地鐵激勵(lì)下振動(dòng)的傳播規(guī)律及建筑物隔振減振研究[D];同濟(jì)大學(xué);2007年
相關(guān)碩士學(xué)位論文 前4條
1 許丁予;高鐵隧道工程穿越汶川地震斷裂帶抗錯(cuò)動(dòng)機(jī)理與設(shè)計(jì)參數(shù)研究[D];北京交通大學(xué);2015年
2 邵潤(rùn)萌;斷層錯(cuò)動(dòng)作用下隧道工程損傷及巖土失效擴(kuò)展機(jī)理研究[D];北京交通大學(xué);2011年
3 劉愷;成蘭線(xiàn)跨斷層隧道的錯(cuò)動(dòng)破壞機(jī)理研究及地震動(dòng)力響應(yīng)分析[D];北京交通大學(xué);2011年
4 劉金;地鐵振動(dòng)在土層中的傳播特性研究[D];沈陽(yáng)工業(yè)大學(xué);2009年
,本文編號(hào):2304410
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2304410.html