天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 路橋論文 >

基于Spark平臺的公交客流預測方法的研究

發(fā)布時間:2018-10-31 11:02
【摘要】:城市公共交通是城市建設和社會生活的重要組成部分,對城市經(jīng)濟和居民生活具有深遠性、全面性的影響。但是,當前交通資源利用率低、交通擁堵、交通污染等問題日益嚴重,這些現(xiàn)實問題直接關系著人民群眾的切身利益。公交客流預測作為一種科學的措施,能為城市公共交通政策制定、系統(tǒng)規(guī)劃、運營管理提供重要信息,能幫助公交管理者制定合理的公交運營計劃和政策,是提高交通資源利用率、增強城市功能的重要途徑,對緩解交通擁堵、降低交通污染具有十分重要的作用。隨機森林是基于多棵決策樹的組合模型,相比于其他算法有較多的優(yōu)勢。然而在單機模式下,隨機森林的決策樹構建和預測投票過程都是串行化的,運行效率較低。數(shù)據(jù)量規(guī)模較大時,傳統(tǒng)單機環(huán)境下的隨機森林算法會消耗大量時間。Spark是一個分布式計算平臺,能夠輕松處理海量數(shù)據(jù),使得大規(guī)模,分布式迭代計算成為可能。本文結合了隨機森林和Spark兩者的優(yōu)點,將隨機森林作為公交客流預測模型,Spark作為隨機森林的并行化實現(xiàn)平臺。本文在現(xiàn)有公交客流數(shù)據(jù)的基礎上,使用Spark SQL統(tǒng)計和提取有用信息,對公交客流的出行規(guī)律進行分析。分別研究了客流的時間分布特征和動態(tài)影響因素,分析了公交客流在工作日、周末的變化規(guī)律,同時分析了天氣、溫度、節(jié)假日等因素對公交短時客流的影響。為了解決單機環(huán)境下隨機森林耗時長的問題,本文提出了基于Spark平臺的隨機森林并行化方法,實現(xiàn)了建樹和投票兩個過程的并行化。實驗結果表明,并行化隨機森林的運行效率要好于傳統(tǒng)單機環(huán)境下的隨機森林。另外,本文通過對比多種回歸模型的實驗結果,證實了并行化隨機森林在模型擬合度和預測精度上都能取得較好的效果,F(xiàn)有對隨機森林的改進研究大多用于分類問題上,對于回歸問題的改進研究較少。本文總結了以往各方面的研究經(jīng)驗,提出了改進型隨機森林樣本相似度計算方法,并基于該計算方法對隨機森林的投票過程進行優(yōu)化,提出了加權投票方法。同時實現(xiàn)了改進型特征選擇算法,該算法能縮小隨機森林進行特征選擇時抽取的特征子集,減小不重要的特征對隨機森林預測效果的影響。實驗結果表明,改進后隨機森林模型的客流預測精度較改進前有所提高。
[Abstract]:Urban public transportation is an important part of urban construction and social life, which has far-reaching and comprehensive influence on urban economy and residents' life. However, the current low utilization of traffic resources, traffic congestion, traffic pollution and other problems are increasingly serious, these practical problems directly related to the vital interests of the people. As a scientific measure, bus passenger flow prediction can provide important information for urban public transport policy making, system planning and operation management, and can help public transport managers to formulate reasonable bus operation plans and policies. It is an important way to improve the utilization rate of traffic resources and enhance the function of the city. It plays an important role in alleviating traffic congestion and reducing traffic pollution. Stochastic forest is a combination model based on multiple decision trees, which has more advantages than other algorithms. However, in the single machine mode, the decision tree construction and prediction voting process of stochastic forest are serialized, and the operation efficiency is low. When the amount of data is large, the traditional stochastic forest algorithm in single computer environment will consume a lot of time. Spark is a distributed computing platform, which can easily process massive data, making large-scale and distributed iterative computing possible. Combining the advantages of stochastic forest and Spark, this paper takes stochastic forest as bus passenger flow prediction model and Spark as parallel implementation platform of stochastic forest. Based on the existing bus passenger flow data, this paper analyzes the travel rules of bus passenger flow by using Spark SQL statistics and extracting useful information. This paper studies the time distribution characteristics and dynamic influencing factors of passenger flow, analyzes the changing law of bus passenger flow on weekdays and weekends, and analyzes the influence of weather, temperature, holidays and other factors on the short-time passenger flow of public transport. In order to solve the problem of long time consuming of random forest in single machine environment, this paper proposes a parallel method of stochastic forest based on Spark platform, which realizes the parallelization of building and voting processes. The experimental results show that the operational efficiency of parallel random forest is better than that of traditional random forest in single machine environment. In addition, by comparing the experimental results of various regression models, it is proved that parallel stochastic forest can achieve good results in model fitting and prediction accuracy. Most of the existing researches on the improvement of stochastic forests are used for classification problems, but few researches on the improvement of regression problems. This paper summarizes the previous research experiences and proposes an improved method for calculating the similarity of random forest samples. Based on this method, the voting process of random forest is optimized and a weighted voting method is proposed. At the same time, an improved feature selection algorithm is implemented, which can reduce the feature subset extracted from the random forest for feature selection, and reduce the influence of the unimportant features on the prediction effect of the stochastic forest. The experimental results show that the prediction accuracy of passenger flow in the improved stochastic forest model is higher than that before the improvement.
【學位授予單位】:電子科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:U491.17;TP181;TP311.13

【參考文獻】

相關期刊論文 前7條

1 王平;單文英;;改進的隨機森林算法在乳腺腫瘤診斷中的應用[J];計算機應用與軟件;2016年04期

2 李慧;李正;佘X;;一種基于綜合不放回抽樣的隨機森林算法改進[J];計算機工程與科學;2015年07期

3 姜平;石琴;陳無畏;張衛(wèi)華;;公交客流預測的神經(jīng)網(wǎng)絡模型[J];武漢理工大學學報(交通科學與工程版);2009年03期

4 楊智偉;趙騫;趙勝川;金雷;毛羿;;基于公交IC卡數(shù)據(jù)信息的客流預測方法研究[J];交通標準化;2009年09期

5 莊進發(fā);羅鍵;彭彥卿;黃春慶;吳長慶;;基于改進隨機森林的故障診斷方法研究[J];計算機集成制造系統(tǒng);2009年04期

6 韓秀華;李津;鄭黎黎;;基于IC卡信息的居民公交出行動態(tài)特性[J];吉林大學學報(工學版);2009年S1期

7 馬成前;任桂山;;基于神經(jīng)網(wǎng)絡智能預測武昌閱馬場隧道交通流[J];計算機與數(shù)字工程;2008年02期

相關碩士學位論文 前4條

1 馬驪;隨機森林算法的優(yōu)化改進研究[D];暨南大學;2016年

2 李振;基于Hadoop平臺的公交客流分析與預測研究[D];東北師范大學;2015年

3 董海洋;公交客流實時分析與短時預測研究[D];大連理工大學;2013年

4 戴霄;基于公交IC信息的公交數(shù)據(jù)分析方法研究[D];東南大學;2006年

,

本文編號:2301942

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2301942.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶73960***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
一区二区三区日本高清| 国产国产精品精品在线| 五月婷日韩中文字幕四虎| 国产一区二区三区草莓av| 日韩丝袜诱惑一区二区| 香蕉尹人视频在线精品| 日本一区不卡在线观看| 国产欧美日韩视频91| 成在线人免费视频一区二区| 亚洲欧美日韩在线中文字幕| 久久国产亚洲精品赲碰热| 女人高潮被爽到呻吟在线观看| 经典欧美熟女激情综合网| 亚洲精品偷拍视频免费观看| 激情五月天深爱丁香婷婷| 正在播放国产又粗又长| 日韩欧美在线看一卡一卡| 色综合久久超碰色婷婷| 亚洲国产综合久久天堂| 九九九热视频免费观看| 日韩人妻少妇一区二区| 天海翼精品久久中文字幕| 很黄很污在线免费观看| 色哟哟精品一区二区三区| 日本国产欧美精品视频| 少妇丰满a一区二区三区| 少妇激情在线免费观看| 欧美日韩国产精品黄片| 婷婷亚洲综合五月天麻豆 | 精品视频一区二区不卡| 在线观看日韩欧美综合黄片| 日本熟妇五十一区二区三区| 爱在午夜降临前在线观看| 久久午夜福利精品日韩| 一区二区日本一区二区欧美| 六月丁香六月综合缴情| 美女黄片大全在线观看| 草草视频福利在线观看| 中国日韩一级黄色大片| 大香蕉伊人一区二区三区| 欧美欧美日韩综合一区|