基于高速公路收費(fèi)數(shù)據(jù)的挖掘預(yù)測(cè)分析與應(yīng)用研究
[Abstract]:As the most direct product of expressway network toll management system, expressway toll collection data has the characteristics of rich fields, substantial content, large amount of data, timely updating, and so on. A lot of information hidden under the basic data can be obtained by analyzing and mining the charging data in depth. In this paper, based on the characteristic analysis of expressway toll flow data, from the aspects of algorithm optimization, model establishment, case analysis and application comparison, the prediction of expressway vehicle travel path, cross-section traffic flow and section travel time are studied. On the one hand, it can improve the traveler's travel choice, on the other hand, it can also improve the management level of highway management department. In view of the fact that the related prediction research at home and abroad only pays attention to a single aspect, but lacks the perfect and systematic comprehensive prediction mining research, this paper mainly completes the following work: first, a preprocessing method of the original toll data of expressway is proposed. Aiming at the large proportion of abnormal data in charge data, in order to minimize the interference of abnormal data, the paper puts forward that the abnormal data can be divided into redundant data, missing data and noise data. The feasibility of the method is verified by an example. Secondly, the vehicle travel path prediction model is established based on Markov prediction method. The models are built to improve the prediction accuracy. In order to solve the state transition probability matrix in the forecasting method, the statistical method and the linear equation group method are selected to solve and analyze respectively. The results show that the statistical method is more suitable for the forecasting characteristics of the charging data. Thirdly, on the basis of path prediction, the traffic state prediction of expressway section is studied. The section traffic flow and vehicle travel time are selected as the predictors of road traffic state. A cross-section traffic flow statistic method based on toll data is proposed to predict the traffic flow on the basis of the data. The analysis of examples shows that the prediction of cross-section traffic flow based on adaptive Kalman filter algorithm can avoid the defects of Kalman filter algorithm and improve the prediction accuracy. Then, the correlation between section travel time and cross-section traffic flow is demonstrated, and a density-based road travel time estimation method is proposed, and the algorithm is modified. The feasibility and accuracy of the algorithm are verified by an MATLAB example. Finally, based on the above research results, the forecast application scenario of highway toll data is put forward. The traffic prediction is carried out according to the different traffic characteristics of weekdays weekends and holidays. Some conclusions can be drawn and used in the research of related fields.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U495
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙建東;徐菲菲;張琨;白繼根;;融合多源數(shù)據(jù)預(yù)測(cè)高速公路站間旅行時(shí)間[J];交通運(yùn)輸系統(tǒng)工程與信息;2016年01期
2 肖潤(rùn)謀;李彬;陳蔭三;;基于大數(shù)據(jù)的高速公路運(yùn)輸趨勢(shì)分析[J];交通運(yùn)輸工程學(xué)報(bào);2015年05期
3 符方睿;羅方;;廣東省高速公路ETC/MTC混合車道實(shí)施方案[J];中國(guó)交通信息化;2015年04期
4 李卉;申孟宜;展國(guó)殿;;大數(shù)據(jù)在我國(guó)高速公路超限問(wèn)題研究中的應(yīng)用初探[J];統(tǒng)計(jì)研究;2014年10期
5 薛文婷;張波;李署堅(jiān);;組合導(dǎo)航中一種新息自適應(yīng)卡爾曼濾波算法[J];全球定位系統(tǒng);2014年04期
6 宋子房;;公路短時(shí)車流量預(yù)測(cè)模型研究[J];科學(xué)決策;2014年04期
7 李慧兵;楊曉光;;面向行程時(shí)間預(yù)測(cè)準(zhǔn)確度評(píng)價(jià)的數(shù)據(jù)融合方法[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年01期
8 蔣亞平;郭俊亮;;基于馬爾柯夫過(guò)程的交叉路口車流量預(yù)測(cè)模型研究[J];鄭州輕工業(yè)學(xué)院學(xué)報(bào)(自然科學(xué)版);2012年06期
9 沈強(qiáng);;基于高速公路收費(fèi)數(shù)據(jù)的路網(wǎng)運(yùn)行狀態(tài)評(píng)價(jià)[J];公路交通科技;2012年08期
10 劉擁華;孫靜怡;何民;賈利民;莊文君;;高速公路貨物運(yùn)輸量統(tǒng)計(jì)方法[J];公路交通科技;2012年04期
相關(guān)碩士學(xué)位論文 前7條
1 周悅;基于預(yù)測(cè)控制的道路交通生態(tài)控制方法研究[D];浙江工業(yè)大學(xué);2015年
2 孫會(huì);基于壓縮感知理論的重建算法研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2014年
3 楊春霞;海峽西岸經(jīng)濟(jì)區(qū)高速公路貨物運(yùn)輸發(fā)展研究[D];長(zhǎng)安大學(xué);2014年
4 王浩;基于收費(fèi)數(shù)據(jù)的高速公路旅行時(shí)間自適應(yīng)插值卡爾曼濾波預(yù)測(cè)研究[D];北京交通大學(xué);2014年
5 李敏;基于高速公路聯(lián)網(wǎng)收費(fèi)數(shù)據(jù)的路徑交通量求解方法研究[D];華南理工大學(xué);2012年
6 王延鈞;治理超限超載運(yùn)輸存在的問(wèn)題及其主要對(duì)策[D];吉林大學(xué);2011年
7 常濤;改進(jìn)型MapReduce框架的研究與設(shè)計(jì)[D];北京郵電大學(xué);2011年
,本文編號(hào):2301156
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2301156.html