高墩大跨度連續(xù)剛構(gòu)橋地震響應(yīng)分析
[Abstract]:With the rapid development of economy and construction in China, long-span continuous rigid frame bridges are also widely used. Due to the good span capacity of rigid frame bridge, it is favored by more and more mountain roads, and the construction of bridge piers is becoming higher and higher. Therefore, the seismic response of long-span continuous rigid frame bridge with high piers is discussed in this paper. The main contents of this paper are as follows: (1) the dynamic characteristics of the structure of Xuejiaba No. 2 long-span continuous rigid frame bridge with high pier and large span are analyzed by using MIDAS/CIVIL software, and the vibration law of the structure is analyzed. The results show that: 1 the first vibration mode of the structure is vertical bending and longitudinal floating, and it is possible to produce a large plastic turning angle at the top of the pier and the bottom of the pier in the direction of the bridge, so we should pay attention to the pier top and the bottom of the pier, and strengthen the design of these plastic hinges. (2) the second and third vibration modes are both transverse bending, and the lateral stiffness of the bridge is low, which may result in larger lateral displacement. (2) the response spectrum seismic response of long-span rigid frame bridge with high piers is analyzed and studied, and the contribution of seismic excitation in different directions to the internal force and displacement of the structure is compared under three working conditions. The combination mode of seismic wave is obtained. It is found that: (1) the seismic excitation in the longitudinal and transverse direction must be considered, but the seismic excitation of the vertical bridge should not be considered when the fortification intensity is low, and the displacement of the pier is especially affected by the transverse partition of the pier. Especially the displacement along the bridge and across the bridge. Therefore, in the design of hollow piers, it is necessary to design reasonably and set the transverse diaphragm in a reasonable position, which will effectively reduce the displacement of the bridge piers. (3) three sets of seismic waves are used to analyze the seismic response of the structure, and the most unfavorable seismic waves are selected. It is found that, although the peak acceleration of seismic wave is the same, the spectral characteristics of seismic wave have obvious influence on the seismic response of the structure. (4) the results of response spectrum analysis and time-history analysis are compared. (5) dynamic time-history analysis method is used to analyze the seismic isolation device with high damping rubber bearing on the top of side pier, and to analyze the seismic response of the structure under the installation of seismic isolation support. It is found that: (1) the bearing has little effect on the longitudinal moment of the main beam, but it has a very obvious decrease in the transverse shear force of the main beam, and the support has little effect on the shear force of the main pier of the rigid frame bridge. But the application of rigid frame bridge support can reduce the lateral shear force of lateral bridge effectively, because the support is located at the top of the pier of side pier, and it also proves that the effect of bearing on the seismic force of lateral bridge is very obvious. (3) the application of the support will make the bending moment of the longitudinal bridge at the bottom of the main pier, the shearing force of the longitudinal bridge becoming smaller, the moment of the side pier and the longitudinal shear force of the longitudinal bridge becoming larger, which is beneficial to the overall stress of the structure and the improvement of the seismic performance of the structure; (5) under the action of seismic force, the maximum internal force of the main beam is located at the root of the main beam, and the internal force of the pier is the largest at the top of the pier and the bottom of the pier. Therefore, special attention should be paid to the seismic design of these key locations.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U442.55;U448.23
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 谷音;蔡隆文;高智能;卓衛(wèi)東;;基于增量動(dòng)力分析和纖維模型的矮塔斜拉橋結(jié)構(gòu)抗震性能研究[J];防災(zāi)減災(zāi)工程學(xué)報(bào);2014年05期
2 沈菲君;徐振華;;與軌道交通共建的雙層高架橋梁抗震性能研究[J];城市道橋與防洪;2014年10期
3 武維宏;;超大直徑自應(yīng)力鋼管混凝土索塔設(shè)計(jì)與施工關(guān)鍵技術(shù)[J];城市道橋與防洪;2014年10期
4 陳旭;周東華;章勝平;王鵬;李龍起;;壓彎截面的彈塑性彎矩-曲率相關(guān)關(guān)系的解析法[J];工程力學(xué);2014年11期
5 朱勇毅;羅富元;;中小跨橋梁橫向抗震擋塊的合理設(shè)置方式[J];城市道橋與防洪;2014年11期
6 黃學(xué)漾;宗周紅;黎雅樂;夏樟華;;獨(dú)塔斜拉橋模型地震模擬振動(dòng)臺(tái)臺(tái)陣試驗(yàn)[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年06期
7 高峰;;簡(jiǎn)支轉(zhuǎn)連續(xù)橋梁下部抗震穩(wěn)定性分析[J];湖南工程學(xué)院學(xué)報(bào)(自然科學(xué)版);2014年04期
8 柳春光;郝二通;張士博;孫國(guó)帥;;LCCA方法在橋梁工程中應(yīng)用的研究綜述[J];中外公路;2014年06期
9 何雙;趙桂峰;馬玉宏;崔杰;謝禮立;;基于概率地震需求模型的隔震橋梁易損性對(duì)比[J];地震工程與工程振動(dòng);2014年06期
10 李宏祥;;速度鎖定支座在中新生態(tài)城故道橋上的應(yīng)用[J];城市道橋與防洪;2014年12期
相關(guān)博士學(xué)位論文 前10條
1 付國(guó);鋼筋混凝土框架結(jié)構(gòu)地震倒塌破壞研究[D];長(zhǎng)安大學(xué);2014年
2 宗雪梅;城市多層立交結(jié)構(gòu)基于性能抗震設(shè)計(jì)方法研究[D];長(zhǎng)安大學(xué);2014年
3 李鵬飛;應(yīng)力相關(guān)阻尼模型及其在梁式橋動(dòng)力分析中的應(yīng)用[D];北京交通大學(xué);2014年
4 李忠三;基于靜動(dòng)力特性的多塔長(zhǎng)跨斜拉橋結(jié)構(gòu)體系剛度研究[D];北京交通大學(xué);2014年
5 魯四平;軟土深基坑開挖下鐵路橋梁力學(xué)性能及安全監(jiān)測(cè)研究[D];中南大學(xué);2013年
6 丁明波;鐵路重力式橋墩抗震加固方法研究[D];蘭州交通大學(xué);2013年
7 張永亮;鐵路橋梁樁基礎(chǔ)抗震設(shè)計(jì)方法研究[D];蘭州交通大學(xué);2013年
8 陳旭;鋼筋混凝土柱二階彈塑性計(jì)算方法研究[D];昆明理工大學(xué);2014年
9 程玲;基于Pushover方法的單自由度結(jié)構(gòu)抗震易損性分析[D];大連理工大學(xué);2014年
10 張宇;基于全壽命周期的近海鋼筋混凝土橋梁結(jié)構(gòu)抗震性能分析[D];大連理工大學(xué);2015年
相關(guān)碩士學(xué)位論文 前2條
1 呂曉瑩;基于MOPSO的RC橋梁全壽命抗震性能多目標(biāo)優(yōu)化研究[D];大連理工大學(xué);2015年
2 宋鵬;配置HRB500鋼筋橋墩抗震性能分析及數(shù)值模擬[D];河北工業(yè)大學(xué);2015年
,本文編號(hào):2291599
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2291599.html