天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 路橋論文 >

高墩大跨度連續(xù)剛構(gòu)橋地震響應(yīng)分析

發(fā)布時(shí)間:2018-10-24 13:54
【摘要】:隨著我國(guó)經(jīng)濟(jì)和建設(shè)事業(yè)的快速發(fā)展,大跨度連續(xù)剛構(gòu)橋梁也受到大量應(yīng)用。由于剛構(gòu)橋良好的跨越能力,因此受到越來(lái)越多的山區(qū)道路的青睞,且橋墩的修建也越來(lái)越高,因此在本文中對(duì)高墩大跨連續(xù)剛構(gòu)橋的地震反應(yīng)做了一些探討。本文的主要研究?jī)?nèi)容有以下幾點(diǎn):(1)利用MIDAS/CIVIL專業(yè)有限元分析軟件對(duì)薛家壩2號(hào)高墩大跨度連續(xù)剛構(gòu)橋進(jìn)行結(jié)構(gòu)的動(dòng)力特性分析,分析結(jié)構(gòu)的振動(dòng)規(guī)律。結(jié)果發(fā)現(xiàn):①結(jié)構(gòu)的第一階振型為體系豎彎+縱飄,有可能在順橋向的橋墩墩頂、墩底產(chǎn)生較大塑性轉(zhuǎn)角,應(yīng)對(duì)橋墩的墩頂及墩底給予重視,加強(qiáng)在這些塑性鉸區(qū)的設(shè)計(jì)、配筋;②第二階和第三階振型都表現(xiàn)為橫彎,橋的橫向剛度較低,可能會(huì)產(chǎn)生較大的橫向位移;③高階振型主要影響的是橋梁的豎向地震響應(yīng)。(2)對(duì)高墩大跨度剛構(gòu)橋進(jìn)行反應(yīng)譜地震響應(yīng)分析研究,通過(guò)比較在三種工況下各方向地震激勵(lì)對(duì)結(jié)構(gòu)各種內(nèi)力、位移的貢獻(xiàn),得出地震波的組合方式。經(jīng)過(guò)分析發(fā)現(xiàn):①縱橋向,橫橋向的地震激勵(lì)必須進(jìn)行考慮,而當(dāng)設(shè)防烈度較低時(shí)豎橋向地震的地震激勵(lì)可不進(jìn)行考慮;②橋墩的橫隔板對(duì)橋墩的位移影響特別大,尤其是順橋向和橫橋向位移。因此在空心墩的設(shè)計(jì)時(shí),要合理給予設(shè)計(jì),在合理的位置設(shè)置橫隔板,會(huì)有效的降低橋墩的位移。(3)采用三組地震波對(duì)結(jié)構(gòu)進(jìn)行地震響應(yīng)分析,選取出最不利地震波。對(duì)比發(fā)現(xiàn),盡管地震波的加速度峰值相同,但是地震波的頻譜特性對(duì)結(jié)構(gòu)地震響應(yīng)具有明顯的影響。(4)將反應(yīng)譜分析與時(shí)程分析的結(jié)果進(jìn)行對(duì)比,選取滿足抗震規(guī)范的地震波。(5)采用動(dòng)態(tài)時(shí)程分析方法對(duì)在邊墩墩頂上設(shè)置高阻尼橡膠支座減隔震裝置進(jìn)行分析,分析在設(shè)置減隔震支座下結(jié)構(gòu)的地震響應(yīng)。發(fā)現(xiàn)在地震力的作用下:①支座對(duì)主梁的縱橋向彎矩幾乎沒有影響,但對(duì)主梁的橫橋向剪力卻有著十分明顯的降低;②支座對(duì)于剛構(gòu)橋梁主墩橫橋向剪力的降低很小。但是剛構(gòu)橋梁支座的應(yīng)用會(huì)十分有效的降低邊墩橫橋向剪力,這是因?yàn)橹ёO(shè)置在邊墩的墩頂,也證明支座對(duì)于橫橋向地震力的減震效果非常明顯;③支座的應(yīng)用會(huì)使主墩墩底縱橋向彎矩、縱橋向剪力變小,邊墩彎矩和縱橋向剪力變大,這有利于結(jié)構(gòu)的整體受力,提高結(jié)構(gòu)的抗震性能;④支座對(duì)主梁和主墩的位移影響幾乎可以考慮不計(jì);⑤地震力作用下,主梁的內(nèi)力最大值主梁根部位置,橋墩的地震反應(yīng)內(nèi)力在墩頂和墩底最大,因此需要特別注意這些關(guān)鍵位置的抗震設(shè)計(jì)。
[Abstract]:With the rapid development of economy and construction in China, long-span continuous rigid frame bridges are also widely used. Due to the good span capacity of rigid frame bridge, it is favored by more and more mountain roads, and the construction of bridge piers is becoming higher and higher. Therefore, the seismic response of long-span continuous rigid frame bridge with high piers is discussed in this paper. The main contents of this paper are as follows: (1) the dynamic characteristics of the structure of Xuejiaba No. 2 long-span continuous rigid frame bridge with high pier and large span are analyzed by using MIDAS/CIVIL software, and the vibration law of the structure is analyzed. The results show that: 1 the first vibration mode of the structure is vertical bending and longitudinal floating, and it is possible to produce a large plastic turning angle at the top of the pier and the bottom of the pier in the direction of the bridge, so we should pay attention to the pier top and the bottom of the pier, and strengthen the design of these plastic hinges. (2) the second and third vibration modes are both transverse bending, and the lateral stiffness of the bridge is low, which may result in larger lateral displacement. (2) the response spectrum seismic response of long-span rigid frame bridge with high piers is analyzed and studied, and the contribution of seismic excitation in different directions to the internal force and displacement of the structure is compared under three working conditions. The combination mode of seismic wave is obtained. It is found that: (1) the seismic excitation in the longitudinal and transverse direction must be considered, but the seismic excitation of the vertical bridge should not be considered when the fortification intensity is low, and the displacement of the pier is especially affected by the transverse partition of the pier. Especially the displacement along the bridge and across the bridge. Therefore, in the design of hollow piers, it is necessary to design reasonably and set the transverse diaphragm in a reasonable position, which will effectively reduce the displacement of the bridge piers. (3) three sets of seismic waves are used to analyze the seismic response of the structure, and the most unfavorable seismic waves are selected. It is found that, although the peak acceleration of seismic wave is the same, the spectral characteristics of seismic wave have obvious influence on the seismic response of the structure. (4) the results of response spectrum analysis and time-history analysis are compared. (5) dynamic time-history analysis method is used to analyze the seismic isolation device with high damping rubber bearing on the top of side pier, and to analyze the seismic response of the structure under the installation of seismic isolation support. It is found that: (1) the bearing has little effect on the longitudinal moment of the main beam, but it has a very obvious decrease in the transverse shear force of the main beam, and the support has little effect on the shear force of the main pier of the rigid frame bridge. But the application of rigid frame bridge support can reduce the lateral shear force of lateral bridge effectively, because the support is located at the top of the pier of side pier, and it also proves that the effect of bearing on the seismic force of lateral bridge is very obvious. (3) the application of the support will make the bending moment of the longitudinal bridge at the bottom of the main pier, the shearing force of the longitudinal bridge becoming smaller, the moment of the side pier and the longitudinal shear force of the longitudinal bridge becoming larger, which is beneficial to the overall stress of the structure and the improvement of the seismic performance of the structure; (5) under the action of seismic force, the maximum internal force of the main beam is located at the root of the main beam, and the internal force of the pier is the largest at the top of the pier and the bottom of the pier. Therefore, special attention should be paid to the seismic design of these key locations.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U442.55;U448.23

【共引文獻(xiàn)】

相關(guān)期刊論文 前10條

1 谷音;蔡隆文;高智能;卓衛(wèi)東;;基于增量動(dòng)力分析和纖維模型的矮塔斜拉橋結(jié)構(gòu)抗震性能研究[J];防災(zāi)減災(zāi)工程學(xué)報(bào);2014年05期

2 沈菲君;徐振華;;與軌道交通共建的雙層高架橋梁抗震性能研究[J];城市道橋與防洪;2014年10期

3 武維宏;;超大直徑自應(yīng)力鋼管混凝土索塔設(shè)計(jì)與施工關(guān)鍵技術(shù)[J];城市道橋與防洪;2014年10期

4 陳旭;周東華;章勝平;王鵬;李龍起;;壓彎截面的彈塑性彎矩-曲率相關(guān)關(guān)系的解析法[J];工程力學(xué);2014年11期

5 朱勇毅;羅富元;;中小跨橋梁橫向抗震擋塊的合理設(shè)置方式[J];城市道橋與防洪;2014年11期

6 黃學(xué)漾;宗周紅;黎雅樂;夏樟華;;獨(dú)塔斜拉橋模型地震模擬振動(dòng)臺(tái)臺(tái)陣試驗(yàn)[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年06期

7 高峰;;簡(jiǎn)支轉(zhuǎn)連續(xù)橋梁下部抗震穩(wěn)定性分析[J];湖南工程學(xué)院學(xué)報(bào)(自然科學(xué)版);2014年04期

8 柳春光;郝二通;張士博;孫國(guó)帥;;LCCA方法在橋梁工程中應(yīng)用的研究綜述[J];中外公路;2014年06期

9 何雙;趙桂峰;馬玉宏;崔杰;謝禮立;;基于概率地震需求模型的隔震橋梁易損性對(duì)比[J];地震工程與工程振動(dòng);2014年06期

10 李宏祥;;速度鎖定支座在中新生態(tài)城故道橋上的應(yīng)用[J];城市道橋與防洪;2014年12期

相關(guān)博士學(xué)位論文 前10條

1 付國(guó);鋼筋混凝土框架結(jié)構(gòu)地震倒塌破壞研究[D];長(zhǎng)安大學(xué);2014年

2 宗雪梅;城市多層立交結(jié)構(gòu)基于性能抗震設(shè)計(jì)方法研究[D];長(zhǎng)安大學(xué);2014年

3 李鵬飛;應(yīng)力相關(guān)阻尼模型及其在梁式橋動(dòng)力分析中的應(yīng)用[D];北京交通大學(xué);2014年

4 李忠三;基于靜動(dòng)力特性的多塔長(zhǎng)跨斜拉橋結(jié)構(gòu)體系剛度研究[D];北京交通大學(xué);2014年

5 魯四平;軟土深基坑開挖下鐵路橋梁力學(xué)性能及安全監(jiān)測(cè)研究[D];中南大學(xué);2013年

6 丁明波;鐵路重力式橋墩抗震加固方法研究[D];蘭州交通大學(xué);2013年

7 張永亮;鐵路橋梁樁基礎(chǔ)抗震設(shè)計(jì)方法研究[D];蘭州交通大學(xué);2013年

8 陳旭;鋼筋混凝土柱二階彈塑性計(jì)算方法研究[D];昆明理工大學(xué);2014年

9 程玲;基于Pushover方法的單自由度結(jié)構(gòu)抗震易損性分析[D];大連理工大學(xué);2014年

10 張宇;基于全壽命周期的近海鋼筋混凝土橋梁結(jié)構(gòu)抗震性能分析[D];大連理工大學(xué);2015年

相關(guān)碩士學(xué)位論文 前2條

1 呂曉瑩;基于MOPSO的RC橋梁全壽命抗震性能多目標(biāo)優(yōu)化研究[D];大連理工大學(xué);2015年

2 宋鵬;配置HRB500鋼筋橋墩抗震性能分析及數(shù)值模擬[D];河北工業(yè)大學(xué);2015年

,

本文編號(hào):2291599

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2291599.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶192d3***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com