基于影響線的中小橋梁荷載識(shí)別技術(shù)研究
[Abstract]:In recent years, many catastrophic bridge collapse accidents occurred frequently in China, which caused widespread concern about bridge structure safety. Health monitoring of bridge structures has also become a hot topic in bridge engineering nowadays. Moving load identification technology can further improve the health monitoring system. However, most existing load identification methods have different limitations and need further demonstration of practical engineering. Aiming at the high precision identification of moving load of single vehicle and multi-vehicle, this paper presents a method of identification of moving load of single vehicle based on influence line and considering the transverse distribution of load, and a method of identification of moving load of multi-vehicle based on influence line and BP neural network. The feasibility and applicability of the above method are verified by numerical simulation and vehicle bridge test in laboratory. The main contents and conclusions of this paper are as follows: (1) in order to improve the accuracy of moving load identification, a moving load identification method based on the influence line and considering the transverse distribution of load is proposed and established. The method without considering the transverse distribution of load is compared with the method of considering the transverse distribution of load. The results show that the method without load identification is not suitable to solve the spatial problem, but the method of transverse distribution of load is taken into account. For the spatial problem of vehicle traveling on the bridge deck at any position, its recognition accuracy is very high, and the anti-noise performance is excellent. (2) through the test of the vehicle bridge in the laboratory, The feasibility of the influence line method considering the transverse distribution of load in practical engineering is further studied. The result of speed recognition shows that the error of speed recognition can be controlled within 鹵5%, and the accuracy of speed recognition has great influence on the recognition of vehicle weight. The result of vehicle weight identification shows that the relative error of vehicle weight can be controlled within 鹵10% by using the influence line method considering the transverse distribution of load. And 93% of the samples can be controlled within 鹵5%. (3) because it is impossible to establish an ideal mathematical model to identify the moving loads of multiple vehicles, according to the information of vehicle weight contained in the strain influence line, and then combined with the BP neural network method, A moving load identification method based on influence line and BP neural network is established. The experimental results show that the method can accurately identify the lane position information of the vehicle, and the relative error of all samples can be controlled within 鹵10% when the vehicle load is identified. And 97% of the samples could be controlled within 鹵5%.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U446
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 宋海良;;國(guó)內(nèi)橋梁垮塌事故的分析與反思[J];交通世界(建養(yǎng).機(jī)械);2012年08期
2 張世英;;鋼筋銹蝕對(duì)超載鋼筋混凝土梁式橋的裂縫影響分析[J];交通世界(建養(yǎng).機(jī)械);2012年07期
3 余本國(guó);;BP神經(jīng)網(wǎng)絡(luò)局限性及其改進(jìn)的研究[J];山西農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年01期
4 譚冬蓮;;基于影響線理論應(yīng)用監(jiān)測(cè)信息反演橋上車輛荷載[J];力學(xué)與實(shí)踐;2008年02期
5 袁向榮;;梁振動(dòng)響應(yīng)曲線滑動(dòng)擬合法及在移動(dòng)荷載識(shí)別中的應(yīng)用[J];噪聲與振動(dòng)控制;2006年03期
6 于秀娟;余有龍;張敏;廖延彪;賴淑蓉;;鈦合金片封裝光纖光柵傳感器的應(yīng)變和溫度傳感特性研究[J];光電子·激光;2006年05期
7 譚金華;陳惟珍;程飛;;基于運(yùn)營(yíng)狀態(tài)監(jiān)測(cè)數(shù)據(jù)識(shí)別過橋車輛荷載[J];橋梁建設(shè);2006年01期
8 張曉文,楊煜普,許曉鳴;神經(jīng)網(wǎng)絡(luò)傳遞函數(shù)的功能分析與仿真研究[J];計(jì)算機(jī)仿真;2005年10期
9 馬翔;陳新楚;王劭伯;;均勻設(shè)計(jì)法在RBF神經(jīng)網(wǎng)絡(luò)樣本優(yōu)選中的應(yīng)用[J];模式識(shí)別與人工智能;2005年02期
10 詹亞歌,蔡海文,耿建新,瞿榮輝,向世清,王向朝;鋁槽封裝光纖光柵傳感器的增敏特性研究[J];光子學(xué)報(bào);2004年08期
相關(guān)博士學(xué)位論文 前1條
1 王寧波;非路面式橋梁動(dòng)態(tài)稱重理論與試驗(yàn)研究[D];中南大學(xué);2013年
相關(guān)碩士學(xué)位論文 前6條
1 張劍超;關(guān)于橋梁荷載橫向分布系數(shù)的研究[D];武漢理工大學(xué);2011年
2 韓清海;中小跨徑橋梁荷載橫向分布系數(shù)計(jì)算方法的研究及其應(yīng)用[D];吉林大學(xué);2009年
3 陳修輝;基于神經(jīng)網(wǎng)絡(luò)的橋梁移動(dòng)荷載識(shí)別[D];西南交通大學(xué);2009年
4 劉軍;神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)算法研究[D];江西師范大學(xué);2009年
5 王波;基于BP神經(jīng)網(wǎng)絡(luò)的橋上移動(dòng)荷載識(shí)別[D];天津大學(xué);2006年
6 張劍飛;貝葉斯網(wǎng)絡(luò)學(xué)習(xí)方法和算法研究[D];東北師范大學(xué);2005年
,本文編號(hào):2268251
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2268251.html