基于自動(dòng)模態(tài)提取和環(huán)境影響分離的橋梁結(jié)構(gòu)性能變化識(shí)別
[Abstract]:By establishing a reasonable health monitoring system, it is found that the change of the whole performance of the bridge structure in the early stage is of great significance to avoid the occurrence of safety accidents and excessive economic losses. In this paper, a continuous dynamic health monitoring system is established to obtain the dynamic response signals of the bridge structure, and a large number of dynamic parameters are obtained based on the automatic modal parameter extraction method, and then the statistical identification model of the dynamic parameters and environmental factors is established. Removing the influence of environmental factors on the dynamic parameters, extracting the index which is sensitive to the overall change of the structure, and identifying the overall performance change of the structure. In order to obtain a large number of accurate modal parameters, the basic theory of covariance-driven stochastic subspace method (SSI-COV) and fuzzy clustering algorithm are applied to the continuous dynamic data in this paper, and the stability graph with no false modal is obtained, and the automatic modal parameter extraction is realized. By using multiple linear regression method, a statistical model is established for a large number of dynamic parameters and corresponding environmental factors. The outlier value of the residual matrix calculated by the optimal statistical model is analyzed and a novel index which is only sensitive to the structural performance change is obtained to identify the overall performance change of the structure. In this paper, a Lab VIEW software environment suitable for National Instrument is used to develop a program for continuous data acquisition and automatic modal parameter extraction. The data acquisition program realizes continuous data acquisition, data preprocessing and automatic timing storage through modular compilation. The automatic modal parameter extraction program uses SSI-COV theory to obtain the stability diagram. By removing the false modal in the stability diagram, the automatic modal parameter extraction is realized. Through continuous automatic acquisition and identification of the model of Binzhou Yellow River Bridge for 9 days, the applicability of the automatic acquisition program and the automatic modal parameter extraction program are tested. Based on the numerical simulation results and modal experiment results of Dasha River Bridge in Shenzhen, a continuous dynamic monitoring system is established, and the modal frequency variation of Dasha River in construction stage is obtained by 42 days of automatic continuous acquisition and automatic modal analysis. The correlation analysis of 42 d structure frequency and temperature data is carried out to identify the structural performance changes in construction stage. The 5-year monitoring data of Pedro e In 錨 s bridge in Portugal are used to identify the structural performance changes in operation phase. The nonlinear relationship between the temperature of the first year and the frequency of the structure is established by the method of multiple linear regression. The model is used as a benchmark to remove the influence of environmental factors on the structural frequency and to extract the index which is only sensitive to the structural performance change. The variation of the novelty index reflecting the structural performance change within 5 years can be obtained and the early structural performance change can be identified.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U446
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐飛鴻;朱檢;張婷婷;;基于曲率模態(tài)曲線的結(jié)構(gòu)損傷識(shí)別方法[J];世界地震工程;2015年04期
2 徐琪澤;吳金志;張毅剛;;基于振型相關(guān)性的結(jié)構(gòu)模態(tài)參數(shù)頻域自動(dòng)識(shí)別[J];建筑結(jié)構(gòu);2015年05期
3 鐘儒勉;宗周紅;秦中遠(yuǎn);鄭沛娟;;基于多尺度模型修正的結(jié)合梁斜拉橋損傷識(shí)別方法[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年02期
4 吳向男;徐岳;梁鵬;李斌;;橋梁結(jié)構(gòu)損傷識(shí)別研究現(xiàn)狀與展望[J];長(zhǎng)安大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年06期
5 張純;洪祖江;宋固全;;基于1范數(shù)正則化的模型修正方法在結(jié)構(gòu)損傷識(shí)別中的應(yīng)用[J];應(yīng)用力學(xué)學(xué)報(bào);2013年05期
6 宗周紅;褚福鵬;牛杰;;基于響應(yīng)面模型修正的橋梁結(jié)構(gòu)損傷識(shí)別方法[J];土木工程學(xué)報(bào);2013年02期
7 宗周紅;牛杰;王浩;;基于模型確認(rèn)的結(jié)構(gòu)概率損傷識(shí)別方法研究進(jìn)展[J];土木工程學(xué)報(bào);2012年08期
8 熊紅霞;劉沐宇;劉可文;;小波變換與SVD方法在結(jié)構(gòu)損傷監(jiān)測(cè)中的應(yīng)用[J];公路;2009年03期
9 陳江;熊峰;;基于曲率模態(tài)振型的損傷識(shí)別方法研究[J];武漢理工大學(xué)學(xué)報(bào);2007年03期
10 陳淮,禹丹江;基于曲率模態(tài)振型進(jìn)行梁式橋損傷識(shí)別研究[J];公路交通科技;2004年10期
相關(guān)博士學(xué)位論文 前4條
1 劉宇飛;基于模型修正與圖像處理的多尺度結(jié)構(gòu)損傷識(shí)別[D];清華大學(xué);2015年
2 孫磊;小波分析在橋梁健康監(jiān)測(cè)中的應(yīng)用研究[D];長(zhǎng)安大學(xué);2012年
3 章國(guó)穩(wěn);環(huán)境激勵(lì)下結(jié)構(gòu)模態(tài)參數(shù)自動(dòng)識(shí)別與算法優(yōu)化[D];重慶大學(xué);2012年
4 李晶;基于廣義柔度矩陣的結(jié)構(gòu)損傷識(shí)別研究[D];吉林大學(xué);2011年
相關(guān)碩士學(xué)位論文 前1條
1 洪祖江;基于正則化有限元模型修正方法的結(jié)構(gòu)損傷識(shí)別[D];南昌大學(xué);2013年
,本文編號(hào):2252273
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2252273.html