鐵路隧道單雙線分岔過渡段地震動(dòng)力響應(yīng)研究
[Abstract]:Bifurcation tunnel is usually composed of long span section, multi arch section and small net distance section. Its structure type and stress distribution of surrounding rock are more complex, which is the most difficult engineering in design and construction, and it is easy to occur serious earthquake damage in earthquake. Therefore, it is of great engineering value and significance to study the seismic dynamic response of the bifurcation tunnel in the high intensity seismic area and the measures to resist and reduce the earthquake. In this paper, taking the transition section of Yangjiaping tunnel of Cheng-lan railway as the engineering background, the seismic dynamic response of the bifurcation tunnel is studied by numerical calculation, and the measures to resist and reduce the earthquake are studied, and the anti-seismic measures suitable for the project are put forward. The main work and research results of this paper are as follows: (1) the difference of seismic dynamic response between middle partition wall and middle rock column of bifurcation tunnel under two working conditions is analyzed by numerical calculation. The results show that the peak values of tensile stress and compressive stress in the middle wall of the multi-arch tunnel are larger than those in the middle rock column of the tunnel with small net distance, and the shear stress of the middle partition wall is larger than that of the medium rock column, and with the increase of the width of the middle rock column, the shear stress of the middle wall is larger than that of the middle rock column. The maximum compressive stress is gradually transferred from the edge corner position of the middle rock column to the center position of the middle rock column. It is recommended to adopt the scheme with a middle partition wall. (2) the 3-D numerical model of the transition section of Yangjiaping Tunnel with single and double lines bifurcation is established and its seismic dynamic response is studied. The results show that the horizontal relative displacement of the arch roof and inverted arch of each tunnel is large, the relative deformation of diagonal line of each tunnel has obvious abrupt changes during the transition of bifurcation, multi-arch and small net distance, the longitudinal relative displacement of large arch and double-hole single line is small, and the relative deformation of the diagonal line of each tunnel is relatively small during the transition of bifurcation, multi-arch and small net distance. The deformation of the retaining head wall is large, which is prone to earthquake damage, the peak value of internal force near the side arch shoulder and arch foot of the middle rock column in the transitional section of the middle partition wall and the middle rock column is abrupt, and the lining structure at the left, right arch foot and arch waist of the continuous arch section and the small net distance section is subjected to more stress. The internal force of arch foot and arch waist at the head wall is relatively large, which is the weak part of earthquake resistance. (3) the anti-seismic effect of grouting range, retaining wall parameter and damping joint parameter are studied. The results show that the larger the grouting range is, the smaller the internal force and displacement of the structure are, the better the effect is before and after taking the retaining head wall in the grouting range, the smaller the material stiffness of the retaining head wall is, the smaller the internal force of the structure is. The internal force of the structure in a certain range around it can be significantly reduced by setting the damping joint, but the internal force of the lining structure in the farther position has little effect (4) on the position of the arch foot of the tunnel. Especially the arch foot near the middle wall and the middle rock column is the weak part of earthquake resistance.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U459.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鮑艷;李文輝;安軍海;李曉霖;;近接長距離并行地鐵隧道的地震響應(yīng)特性[J];黑龍江科技大學(xué)學(xué)報(bào);2016年02期
2 馬殷軍;;小凈距空間交叉隧道地震響應(yīng)分析[J];蘭州交通大學(xué)學(xué)報(bào);2015年03期
3 申玉生;鄒成路;靳宗振;王京偉;;穿越軟硬交界面隧道結(jié)構(gòu)動(dòng)力響應(yīng)特性研究[J];現(xiàn)代隧道技術(shù);2015年03期
4 馬建;孫守增;趙文義;王磊;馬勇;劉輝;張偉偉;陳紅燕;陳磊;魏雅雯;葉飛;;中國隧道工程學(xué)術(shù)研究綜述·2015[J];中國公路學(xué)報(bào);2015年05期
5 朱愛山;;基于S.M.F的小凈距公路隧道抗震性能分析[J];西部探礦工程;2014年09期
6 李靜;;不同偏壓狀態(tài)下淺埋連拱隧道地震動(dòng)力響應(yīng)分析[J];湖南交通科技;2013年03期
7 任輝龍;段群苗;蔡永昌;;淺埋連拱隧道爆破的數(shù)值模擬[J];爆破;2012年04期
8 黃娟;彭立敏;雷明鋒;施成華;趙丹;;淺埋小凈距偏壓隧道地震響應(yīng)特性與承載力安全分析[J];鐵道科學(xué)與工程學(xué)報(bào);2012年04期
9 周佳媚;袁松;高波;;小凈距隧道地震動(dòng)力響應(yīng)下的圍巖應(yīng)力場(chǎng)[J];公路交通科技;2012年02期
10 畢強(qiáng);吳金剛;;大跨分岔式隧道結(jié)構(gòu)設(shè)計(jì)關(guān)鍵技術(shù)研究[J];隧道建設(shè);2011年06期
相關(guān)會(huì)議論文 前1條
1 靳曉光;熊亮;;大跨度連拱隧道支護(hù)結(jié)構(gòu)地震穩(wěn)定性分析[A];第三屆全國巖土與工程學(xué)術(shù)大會(huì)論文集[C];2009年
相關(guān)博士學(xué)位論文 前3條
1 趙冬冬;城市地鐵地下結(jié)構(gòu)地震反應(yīng)的試驗(yàn)研究與數(shù)值模擬[D];清華大學(xué);2013年
2 徐沖;分岔隧道設(shè)計(jì)施工優(yōu)化與穩(wěn)定性評(píng)價(jià)[D];北京交通大學(xué);2011年
3 王崢崢;跨斷層隧道結(jié)構(gòu)非線性地震損傷反應(yīng)分析[D];西南交通大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 陳威;高速公路小凈距隧道爆破震害控制技術(shù)研究[D];華東交通大學(xué);2016年
2 王勇;淺埋雙洞隧道地震響應(yīng)規(guī)律研究[D];中國石油大學(xué)(華東);2013年
3 黃宇;劉家灣連拱隧道地震響應(yīng)分析及抗震研究[D];長沙理工大學(xué);2013年
4 汪仁義;雙圓小凈距隧道地震動(dòng)響應(yīng)研究[D];湖南大學(xué);2012年
5 鄭清;山嶺隧道震害分析及洞口段地震動(dòng)力響應(yīng)研究[D];西南交通大學(xué);2010年
6 賀喜;小凈距隧道動(dòng)力響應(yīng)特性分析[D];重慶大學(xué);2009年
7 王正松;雙連拱隧道洞口段地震動(dòng)力響應(yīng)及減震措施研究[D];西南交通大學(xué);2008年
8 袁松;地震動(dòng)力響應(yīng)下公路隧道合理凈距的研究[D];西南交通大學(xué);2008年
9 凌燕婷;公路連拱隧道與小凈距隧道地震動(dòng)力響應(yīng)對(duì)比研究[D];西南交通大學(xué);2009年
10 王義軍;國道318線黃草坪隧道地震動(dòng)力響應(yīng)及減震措施研究[D];成都理工大學(xué);2005年
,本文編號(hào):2241703
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2241703.html