基于能量分析的乘員約束系統(tǒng)優(yōu)化研究
[Abstract]:With the rapid development of automobile technology, traffic accidents are also increasing. As the main protective device, airbag, seat belt and other occupant restraint system can reduce the casualty rate of the occupant. Therefore, the passenger restraint system is particularly important in the field of automobile safety. At present, the passenger restraint system is developing towards diversification and intelligence. Because it is a multi-parameter input and multi-response output system, it will play an important role in shortening the research and development cycle and reducing the cost. In order to solve this problem, based on a new research point of view of occupant constraint system, this paper proposes an optimization method for crew constraint system based on energy analysis from the point of view of energy transfer and distribution in the positive collision process. The main contents are as follows: (1) the main research contents and methods in the field of automobile safety are introduced. The research ideas and theoretical analysis are summarized to determine the research content and technical route of this paper. (2) based on the real vehicle crash test, the vehicle frontal impact simulation model is established by using MADYMO7.5 software and its validity is verified. Through sensitivity analysis, five important parameters were determined from many parameters of the occupant constraint system, and the orthogonal test method was used. According to the energy theory and the energy theory, the occupant restraint system with different parameters is divided into four parts: head, chest, hip and leg. Through the analysis of the energy of each part of the vehicle forward impact process, the energy transfer path of the dummy and the energy absorption of the occupant restraint system are clarified. (4) the orthogonal test data are fitted and analyzed by using MATLAB. The relationship between the comprehensive damage value (WIC) of the occupants and the energy absorption distribution of the constrained system is determined qualitatively and then quantitatively from the relational diagrams and fitting formulas. The results showed that the WIC value was negatively correlated with the peak of energy absorption of safety shoulder straps, safety belts and car seats, and positively correlated with the peak of energy absorption of knee pads and floors. (5) selecting seat belts, car seats, etc. The parameters of the occupant constraint subsystem which has obvious correlation with the comprehensive damage value of the occupants WIC are analyzed and the relationship between the parameters of the constraint subsystem and the peak energy absorption value is constructed one by one. Combined with the relationship between the WIC value and the peak energy absorption of each constraint subsystem, the optimal parameter combination of the occupant constrained system is determined. Therefore, the fast optimization of the constrained system in this paper is accomplished by the energy method. The optimum results are as follows: the elongation of the fabric with safety straps and belts is 13, the ignition time of the preload is 16.7ms, the limiting force of the safety belts is 5400Ns, the inclination angle between the kneading plate and the vertical direction is 24.5o, and the stiffness of the kneepad is 93o of the initial value. In addition, when the friction coefficient of the floor is reduced properly and the seat cushion inclination angle is adjusted to 9.5 擄with the horizontal direction, the maximum energy absorption value of the safety shoulder strap, safety belt and car seat can be reached. The peak energy absorption of the kneepad and floor reaches the minimum value. Under the optimal parameter combination, the WIC value is 0.4023, which is 7.35% lower than the original value, and the performance optimization of the occupant constrained system is completed.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:U491.61
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孟妮;;碰撞過(guò)程中駕駛員座椅后移設(shè)計(jì)[J];山東工業(yè)技術(shù);2016年21期
2 馬桃;張維剛;唐婷;張揚(yáng);;基于全局敏感性分析和Kriging代理模型的汽車(chē)乘員約束系統(tǒng)多參數(shù)優(yōu)化研究[J];中國(guó)機(jī)械工程;2014年13期
3 商恩義;;正面偏置碰撞試驗(yàn)中駕駛員側(cè)安全氣囊的吸能特性[J];汽車(chē)安全與節(jié)能學(xué)報(bào);2014年02期
4 彭金栓;徐磊;邵毅明;;汽車(chē)主動(dòng)安全技術(shù)現(xiàn)狀及發(fā)展趨勢(shì)[J];公路與汽運(yùn);2014年01期
5 李麗;朱西產(chǎn);王晶晶;馬志雄;;汽車(chē)膝部氣囊設(shè)計(jì)與優(yōu)化[J];汽車(chē)技術(shù);2014年01期
6 向志軍;;汽車(chē)座椅構(gòu)件吸能設(shè)計(jì)研究[J];汽車(chē)零部件;2013年02期
7 王玉龍;白中浩;劉曜;周雪桂;;基于乘員類(lèi)型特征識(shí)別的智能安全氣囊控制系統(tǒng)[J];汽車(chē)安全與節(jié)能學(xué)報(bào);2012年03期
8 唐波;;汽車(chē)安全帶的性能研究以及相關(guān)探討[J];汽車(chē)與配件;2011年14期
9 李鐵柱;李光耀;高暉;陳濤;;基于可靠性?xún)?yōu)化的汽車(chē)乘員約束系統(tǒng)的性能改進(jìn)[J];中國(guó)機(jī)械工程;2010年08期
10 張金換;李志剛;許述財(cái);;車(chē)輛碰撞中乘員各部位動(dòng)態(tài)響應(yīng)及能量關(guān)系[J];汽車(chē)安全與節(jié)能學(xué)報(bào);2010年01期
相關(guān)博士學(xué)位論文 前3條
1 洪亮;多工況下駕駛員座椅被動(dòng)安全性研究[D];江蘇大學(xué);2014年
2 劉杰;乘員類(lèi)型的自動(dòng)識(shí)別及其在智能乘員約束系統(tǒng)中的應(yīng)用[D];吉林大學(xué);2007年
3 葛如海;汽車(chē)正面碰撞乘員約束系統(tǒng)匹配研究[D];江蘇大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 唐婷;汽車(chē)乘員約束系統(tǒng)多參數(shù)優(yōu)化理論及方法研究[D];湖南大學(xué);2014年
2 馬桃;多參數(shù)條件下汽車(chē)乘員約束系統(tǒng)匹配設(shè)計(jì)及穩(wěn)健性研究[D];湖南大學(xué);2014年
3 董龍;汽車(chē)正面碰撞乘員約束系統(tǒng)仿真與穩(wěn)健優(yōu)化方法研究[D];浙江大學(xué);2014年
4 王洪海;汽車(chē)智能式安全氣囊控制技術(shù)研究[D];吉林大學(xué);2013年
5 高峰;針對(duì)C-NCAP的某乘用車(chē)正面乘員約束系統(tǒng)仿真優(yōu)化與試驗(yàn)驗(yàn)證[D];吉林大學(xué);2013年
6 張曉偉;針對(duì)尾撞下乘員頸部損傷保護(hù)的平動(dòng)吸能座椅性能分析[D];清華大學(xué);2012年
7 陳超;汽車(chē)碰撞乘員約束系統(tǒng)雙自由度力學(xué)模型建立及應(yīng)用[D];吉林大學(xué);2011年
8 裴磊;基于穩(wěn)健性?xún)?yōu)化的乘員約束系統(tǒng)性能改進(jìn)[D];湖南大學(xué);2011年
9 蔡君;汽車(chē)正面碰撞乘員約束系統(tǒng)模型建立及乘員保護(hù)分析[D];武漢理工大學(xué);2011年
10 張燕;基于能量管理技術(shù)的某轎車(chē)正面碰撞約束系統(tǒng)參數(shù)設(shè)計(jì)[D];吉林大學(xué);2009年
,本文編號(hào):2225402
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2225402.html