鋼箱梁斜拉橋施工過程力學行為與其控制分析
發(fā)布時間:2018-08-27 11:08
【摘要】:隨著中國對交通的需求不斷增長,鋼箱梁斜拉橋不斷被修建,斜拉橋的計算方法與施工控制方法也不斷進步發(fā)展。本文通以西樵大橋為工程背景,在有限元分析模型的基礎(chǔ)上,對結(jié)構(gòu)的索力施工方案、結(jié)構(gòu)安全性進行了計算分析。同時借鑒國內(nèi)外施工經(jīng)驗通過零初始位移法計算給出了西樵大橋的施工過程中的安裝標高;根據(jù)幾何控制法的原理,基于零初始位移法推導了鋼箱梁的制造線形。本文研究內(nèi)容主要包括:1)介紹鋼箱梁斜拉橋的發(fā)展歷史;總結(jié)和歸納斜拉橋施工模擬的重要性和模擬方法,總結(jié)各種類型的斜拉橋模擬方法的優(yōu)缺點與應(yīng)用范圍。根據(jù)西樵大橋結(jié)構(gòu)特點,選取單主梁模型法對西樵大橋的施工過程進行模擬分析。2)在西樵大橋MIDAS模型的基礎(chǔ)上,計算比較通過設(shè)置索力調(diào)整工況達到成橋索力的施工方案與不設(shè)置調(diào)索工況的施工方案,在結(jié)構(gòu)受力方面的優(yōu)劣。同時基于有限元模型分析,計算給出了西樵大橋施工過程中斜拉橋的斜拉索、主梁受力變化情況以及主塔位移情況。在MIDAS有限元模型計算分析的基礎(chǔ)上,分析西樵大橋在施工各階段以及成橋階段的第一類穩(wěn)定安全系數(shù)。3)針對西樵大橋的調(diào)索施工階段,結(jié)合影響矩陣的概念提出通過MIDAS有限元模型獲得該階段索力影響矩陣的方法。使用影響矩陣通過迭代計算出調(diào)索施工階段的調(diào)索施加索力。比較計算索力結(jié)果與實際施工結(jié)果,說明利用影響矩陣進行調(diào)索索力計算的方法是可行與可靠的。4)詳細介紹了零初始位移法與切線初始位移法。基于零初始位移法計算結(jié)構(gòu)各施工過程的變形值,結(jié)合預拱度概念計算給出西樵大橋施工過程中鋼箱梁階段的安裝標高。通過相鄰梁段安裝時關(guān)系,基于零初始位移法計算得出鋼箱梁的制造線形。同通過在施工過程中對結(jié)構(gòu)標高進行實際測量,驗證基于幾何控制法的斜拉橋控制理論的準確性。5)闡述無應(yīng)力索長計算的基本理論,分別采用拋物線法與懸鏈線法計算西樵大橋的無應(yīng)力索長。比較兩種計算方法可知在短索的情況下,拋物線法已經(jīng)具有足夠的精度。6)對西樵橋大橋的主梁重量、主塔剛度、拉索彈性模量、溫度的敏感性做了計算分析,得出各個因素對成橋狀態(tài)的影響值。
[Abstract]:With the increasing demand for traffic in China, steel box girder cable-stayed bridges are being constructed continuously, and the calculation method and construction control method of cable-stayed bridges are developing steadily. Based on the construction experience at home and abroad, the installation elevation of Xiqiao Bridge is calculated by zero initial displacement method. According to the principle of geometric control method, the manufacturing alignment of steel box girder is deduced based on zero initial displacement method. According to the structural characteristics of Xiqiao Bridge, the single girder model is selected to simulate the construction process of Xiqiao Bridge. 2) Based on the MIDAS model of Xiqiao Bridge, the calculation and comparison are carried out by setting the cable force to adjust the working conditions. At the same time, based on the finite element model analysis, the cable of Xiqiao Bridge in the construction process, the force changes of the main girder and the displacement of the main tower are calculated. The first stability safety factor of Xiqiao Bridge is analyzed in each construction stage and completion stage. 3) Aiming at the cable adjustment construction stage of Xiqiao Bridge, a method of obtaining cable force influence matrix by MIDAS finite element model is put forward according to the concept of influence matrix. Cable force. Comparing the results of cable force calculation with the actual construction results, it shows that the method of cable force calculation using influence matrix is feasible and reliable. 4) Zero initial displacement method and tangent initial displacement method are introduced in detail. Installation elevation of steel box girder during bridge construction. The manufacturing alignment of steel box girder is calculated based on zero initial displacement method according to the installation time relationship of adjacent beam sections. The accuracy of control theory of cable-stayed bridge based on geometric control method is verified by actual measurement of structural elevation during construction. 5) The calculation of unstressed cable length is expounded. The parabola method and the catenary method are used to calculate the unstressed cable length of Xiqiao Bridge respectively. Comparing the two methods, the parabola method has enough precision in the case of short cables. 6) The weight of the main girder, the stiffness of the main tower, the elastic modulus of the cable and the temperature sensitivity of the main girder of Xiqiao Bridge are calculated and analyzed. The influence value of each factor on the completion state.
【學位授予單位】:華南理工大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:U448.27
本文編號:2207093
[Abstract]:With the increasing demand for traffic in China, steel box girder cable-stayed bridges are being constructed continuously, and the calculation method and construction control method of cable-stayed bridges are developing steadily. Based on the construction experience at home and abroad, the installation elevation of Xiqiao Bridge is calculated by zero initial displacement method. According to the principle of geometric control method, the manufacturing alignment of steel box girder is deduced based on zero initial displacement method. According to the structural characteristics of Xiqiao Bridge, the single girder model is selected to simulate the construction process of Xiqiao Bridge. 2) Based on the MIDAS model of Xiqiao Bridge, the calculation and comparison are carried out by setting the cable force to adjust the working conditions. At the same time, based on the finite element model analysis, the cable of Xiqiao Bridge in the construction process, the force changes of the main girder and the displacement of the main tower are calculated. The first stability safety factor of Xiqiao Bridge is analyzed in each construction stage and completion stage. 3) Aiming at the cable adjustment construction stage of Xiqiao Bridge, a method of obtaining cable force influence matrix by MIDAS finite element model is put forward according to the concept of influence matrix. Cable force. Comparing the results of cable force calculation with the actual construction results, it shows that the method of cable force calculation using influence matrix is feasible and reliable. 4) Zero initial displacement method and tangent initial displacement method are introduced in detail. Installation elevation of steel box girder during bridge construction. The manufacturing alignment of steel box girder is calculated based on zero initial displacement method according to the installation time relationship of adjacent beam sections. The accuracy of control theory of cable-stayed bridge based on geometric control method is verified by actual measurement of structural elevation during construction. 5) The calculation of unstressed cable length is expounded. The parabola method and the catenary method are used to calculate the unstressed cable length of Xiqiao Bridge respectively. Comparing the two methods, the parabola method has enough precision in the case of short cables. 6) The weight of the main girder, the stiffness of the main tower, the elastic modulus of the cable and the temperature sensitivity of the main girder of Xiqiao Bridge are calculated and analyzed. The influence value of each factor on the completion state.
【學位授予單位】:華南理工大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:U448.27
【參考文獻】
相關(guān)期刊論文 前7條
1 杜蓬娟,黃才良,張哲,劉春城;公和斜拉橋施工控制[J];大連理工大學學報;2003年06期
2 肖汝誠,項海帆;斜拉橋索力優(yōu)化及其工程應(yīng)用[J];計算力學學報;1998年01期
3 汪勁豐;徐興;項貽強;;懸臂澆注施工斜拉橋的誤差控制方法[J];交通運輸工程學報;2008年04期
4 林楨楷;;差值法確定矮塔斜拉橋的初張索力[J];科學技術(shù)與工程;2010年16期
5 秦順全;斜拉橋安裝無應(yīng)力狀態(tài)控制法[J];橋梁建設(shè);2003年02期
6 蘇成,范學明;斜拉橋施工控制參數(shù)靈敏度與可靠度分析[J];土木工程學報;2005年10期
7 狄謹,黃慶;無背索斜塔鋼混凝土結(jié)合梁斜拉橋施工控制仿真[J];長安大學學報(自然科學版);2004年03期
相關(guān)碩士學位論文 前5條
1 張金樹;大跨徑連續(xù)剛構(gòu)橋施工計算和控制[D];長安大學;2005年
2 安金星;大跨度斜拉橋施工控制與仿真計算[D];西南交通大學;2006年
3 白延芳;大跨度混凝土斜拉橋施工控制數(shù)值模擬方法探討[D];西南交通大學;2009年
4 林楨楷;高低塔混合梁斜拉橋合理施工狀態(tài)確定與施工控制[D];華南理工大學;2012年
5 孫文火;大跨度鋼桁梁斜拉橋施工控制分析[D];華南理工大學;2014年
,本文編號:2207093
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2207093.html