基于云模型的城市快速路交通狀態(tài)識別方法研究
[Abstract]:With the rapid increase of traffic demand, urban road traffic becomes increasingly saturated, which seriously restricts the development of social economy. In order to meet the needs of rapid travel among urban groups, the major central cities have begun to plan and build high speed road network. As the basic framework of urban traffic system, expressway bears a large proportion of motor vehicle travel volume. Due to the good accessibility and dense ramp design of expressway, the traffic running situation is worsening year by year, and the efficiency of transportation is greatly decreased, which is not in accord with its function orientation seriously, and the main performance is: the intensity of congestion intensifies. Congestion spread and congestion time continues to grow. Therefore, improving the efficiency of urban expressway traffic becomes the primary task of urban traffic management. Accurate extraction of real-time and reliable traffic state information is the premise of intelligent traffic management, and traffic state has strong randomness and nonlinear characteristics, resulting in the expressway traffic state recognition is very complex. Cloud model is a good tool for qualitative and quantitative interconversion, which provides a new research method for expressway traffic state recognition. In this paper, based on the improved cloud model, the identification method of expressway traffic state is studied, which includes the following aspects: (1) the current research progress of traffic state recognition is reviewed. The cloud model is chosen to identify the traffic state of expressway, and the evaluation index of traffic state is screened to avoid the interference of the two-flow characteristic of the flow to the identification result. The speed and time share are selected as evaluation indexes. (2) the method of data preprocessing is studied to prepare the data for identifying the model. To identify and deal with the error data, the time series method based on the time series weight is designed to correct the lost data. Through the analysis of an example, it is shown that the time varying characteristics of the traffic flow parameters can be better reflected by the data alignment method based on the time series weight. The complement results are closer to the real value. (3) the method of expressway traffic state recognition based on cloud model is established. K-means clustering analysis is used to cluster the historical data, and the initial template cloud is obtained by the reverse cloud generator algorithm, and the trapezoid cloud is used to improve the template to obtain the template cloud of the actual expressway traffic state. Furthermore, the evaluation index is dynamically weighted by the information entropy function, and the traffic state and traffic congestion index of the expressway are obtained. (4) the effectiveness of the model identification is evaluated through specific cases. Based on the microwave data of Chengdu's second ring viaduct, the recognition results of the proposed model and the velocity threshold method / V / C ratio threshold method are compared and analyzed to verify the validity of the traffic state recognition model based on the cloud model. The results show that the method of traffic state recognition based on cloud model can solve the problem that the traditional normal cloud model has low recognition accuracy in extreme cases. It can reflect the real state of traffic and has strong practicability and portability.
【學位授予單位】:西南交通大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:U491
【參考文獻】
相關期刊論文 前10條
1 聶佩林;龔峻峰;;一種路網交通流參數(shù)的融合預測方法[J];交通運輸系統(tǒng)工程與信息;2015年06期
2 伍育紅;;聚類算法綜述[J];計算機科學;2015年S1期
3 褚鵬宇;劉瀾;尹俊淞;盧維科;;融合時空信息的短時交通流預測[J];計算機工程與應用;2016年12期
4 周繼彪;陳紅;閆彬;張文;馮微;;基于云模型的地鐵換乘樞紐擁擠度辨識方法[J];吉林大學學報(工學版);2016年01期
5 李瑞敏;馬瑋;;基于BP神經網絡與D-S證據(jù)理論的路段平均速度融合方法[J];交通運輸工程學報;2014年05期
6 賈興利;許金良;;基于云模型的地震區(qū)公路震害風險評估[J];同濟大學學報(自然科學版);2014年09期
7 俞志富;李俊武;王利華;;一種基于云模型和證據(jù)理論的融合識別方法[J];信息與控制;2014年01期
8 李嘉;劉春華;胡賽陽;王芳;;基于交通數(shù)據(jù)融合技術的行程時間預測模型[J];湖南大學學報(自然科學版);2014年01期
9 凌武能;杭乃善;李如琦;;基于云支持向量機模型的短期風電功率預測[J];電力自動化設備;2013年07期
10 李悅;陸化普;張永波;蔚欣欣;;基于云模型的城市快速路交通狀態(tài)評價方法研究[J];公路工程;2013年03期
相關會議論文 前1條
1 王福建;韋薇;王殿海;祁宏生;;基于宏觀基本圖的城市路網交通狀態(tài)判別與監(jiān)控[A];第七屆中國智能交通年會優(yōu)秀論文集——智能交通技術[C];2012年
相關博士學位論文 前5條
1 丁宏飛;城市快速路交通信息提取與協(xié)同優(yōu)化研究[D];西南交通大學;2015年
2 楊泳;城市快速路交通擁堵形成、傳播規(guī)律及消散控制策略研究[D];西南交通大學;2015年
3 郭洪洋;信息約束條件下的路網行程時間可靠性研究[D];西南交通大學;2014年
4 敖谷昌;城市快速路交通狀態(tài)特性及關聯(lián)分析方法研究[D];北京交通大學;2014年
5 高宏巖;融合移動信號流的高速公路交通擁擠預警與調控[D];山東科技大學;2011年
相關碩士學位論文 前5條
1 王堯;城市道路交通擁堵評價與判定方法研究[D];北京工業(yè)大學;2014年
2 萬佳;基于云模型的路網交通擁堵狀態(tài)判別算法研究[D];哈爾濱工業(yè)大學;2012年
3 李家偉;城市道路交通擁擠狀態(tài)識別關鍵技術研究[D];西南交通大學;2009年
4 劉靜;基于狀態(tài)劃分的交通流短時預測方法研究[D];北京交通大學;2007年
5 張懷天;基于云模型的數(shù)據(jù)挖掘及其在交通流系統(tǒng)中的應用[D];天津大學;2007年
,本文編號:2203267
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2203267.html