基于大數(shù)據(jù)量的特種車(chē)輛搜路算法優(yōu)化與實(shí)現(xiàn)
[Abstract]:Vehicle navigation software is a necessary tool for vehicle travel. At present, the navigation software in the market meets the daily travel needs of ordinary users. Because the special vehicles with overweight, super-high, ultra-wide and super-long have special requirements for road capacity, the navigation software of the market does not have the function of customizing according to the requirements of special vehicles. Special vehicles often travel a long distance, so we need a fast search algorithm for large amount of data in the road network. In order to respond to the call of nationalization, cross-platform software has a good prospect. Firstly, according to the customer's demand and the national policy, this paper leads to the background and significance of the research, and summarizes the research progress of the Dijkstra algorithm optimization and the vehicle navigation software at home and abroad by consulting the relevant literature. The problems that the navigation software in the market can not meet the special needs of special vehicles are summarized. Secondly, the paper introduces the structure and storage mode of the basic data needed in the process of vehicle search analysis. In order to improve the efficiency of road search, the data organization mode used to load the data and the preprocessing of the "key point" data in the road network data based on the special vehicle itself are proposed. Then, the paper describes the conventional algorithm-Dijkstra algorithm, which is needed in the process of vehicle search, and optimizes and improves the efficiency of the Dijkstra algorithm in the big data network environment. Based on the Dijkstra algorithm and the special demand of the special vehicle to the road, the algorithm of road search analysis is designed according to the condition of the special vehicle user's choice of the road, and the algorithm is implemented. Through the research of cross-platform simulation component framework and the study and research of QT internal graphics framework, this paper determines the design idea of special vehicle navigation component, and uses the object-oriented method to preprocess the road network data of large amount of data. The data extraction and management of the "key points" in the database, the conventional search algorithm and the special vehicle search algorithm are designed and implemented in detail. Finally, through concrete examples, the paper successfully verifies each function of the special vehicle component, and realizes the characteristic that the special vehicle component can complete the road search analysis in the short time of the road network condition of large amount of data.
【學(xué)位授予單位】:鄭州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:U495
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李擎,宋頂立,張雙江,李哲,劉建光,王志良;兩種改進(jìn)的最優(yōu)路徑規(guī)劃算法[J];北京科技大學(xué)學(xué)報(bào);2005年03期
2 王杰臣,毛海城,楊得志;圖的節(jié)點(diǎn)-弧段聯(lián)合結(jié)構(gòu)表示法及其在GIS最優(yōu)路徑選取中的應(yīng)用[J];測(cè)繪學(xué)報(bào);2000年01期
3 劉玉海,肖江陽(yáng),張錫恩;一種新型最短路徑搜索算法的研究[J];計(jì)算機(jī)工程與應(yīng)用;2001年17期
4 姚亞鋒;方賢進(jìn);陳代梅;;Dijkstra算法的一種高效率實(shí)現(xiàn)[J];計(jì)算機(jī)與數(shù)字工程;2007年07期
5 胡金星;劉允才;;面向動(dòng)態(tài)導(dǎo)航的城市路網(wǎng)實(shí)時(shí)交通信息服務(wù)系統(tǒng)研究[J];交通與計(jì)算機(jī);2005年06期
6 張國(guó)強(qiáng),晏克非;城市道路網(wǎng)絡(luò)交通特性仿真模型及最短路徑算法[J];交通運(yùn)輸工程學(xué)報(bào);2002年03期
7 朱靜;Dijkstra算法在GIS中的優(yōu)化實(shí)現(xiàn)[J];計(jì)算機(jī)與現(xiàn)代化;2005年09期
8 俞奕;;GIS中最短路徑問(wèn)題的應(yīng)用研究[J];軟件導(dǎo)刊;2007年13期
9 樂(lè)陽(yáng),龔健雅;Dijkstra最短路徑算法的一種高效率實(shí)現(xiàn)[J];武漢測(cè)繪科技大學(xué)學(xué)報(bào);1999年03期
10 衛(wèi)小偉;;城市智能交通控制系統(tǒng)研究與設(shè)計(jì)[J];現(xiàn)代電子技術(shù);2010年17期
相關(guān)碩士學(xué)位論文 前1條
1 蔚潔;車(chē)輛監(jiān)控導(dǎo)航系統(tǒng)中最短路徑的實(shí)時(shí)性研究[D];河北師范大學(xué);2007年
,本文編號(hào):2195663
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2195663.html