廣州地鐵盾構(gòu)施工端頭預(yù)加固合理范圍研究及應(yīng)用
[Abstract]:The shield construction has the advantages of high mechanization, fast driving speed, high construction safety and small influence on the surrounding environment. It is widely used in the construction of underground tunnels in urban subway, electric power, municipal and other underground tunnels. During the construction of shield tunneling, shield construction and construction are the key links of the whole tunnel construction. If improper construction, it may happen. In order to avoid a series of problems that may occur during the initiation and construction of the shield, it is necessary to reinforce the end soil in order to ensure the smooth start and the timely penetration of the shield tunnel. This article takes the Ma'anshan Park of Huadu Square Station in line nine of Guangzhou rail transit to Ma'anshan Park The subway tunnel is the engineering background. Combining engineering practice, engineering experience, theoretical analysis and numerical simulation, the reinforcement method, reinforcement theory and numerical simulation of metro tunnel shield starting station (Ma'anshan Park Station) end soil reinforcement are analyzed and studied. The concrete work contents are as follows: (1) through The practice of the metro tunnel project in Guangzhou rail transit is to understand the general situation of the shield construction project and the reinforcement method and construction technology adopted in this project, and to understand the advantages and disadvantages of all kinds of end reinforcement methods and their applicable conditions on this basis. The effective control of the safety of the shield construction of the subway tunnel is made. (2) on the basis of the classical strength theory, through the establishment of the mechanics and mathematical model of the end reinforcement soil, the theoretical solution of the longitudinal and transverse reinforcement range of the end soil body is derived by using the elastic mechanics, the higher soil mechanics and the higher mathematics method, and the work of the Ma'anshan Park station is worked out. The practical case analysis is carried out to provide theoretical reference for the actual construction of the project. (3) using the three-dimensional finite difference numerical simulation software FLAC3D, the numerical simulation of the end reinforcement range is carried out from the displacement field, the failure field and the stress field under the most unfavorable conditions of the shield opening door. First, the lateral reinforcement scope is guaranteed to be 3M, and the longitudinal reinforcement is long. The degree of 3M, 6m, 10m, 15m is simulated in order to determine the reasonable numerical solution of the longitudinal reinforcement. Secondly, the reasonable longitudinal reinforcement range is guaranteed. The lateral reinforcement range is taken in order to simulate the range of 1m, 2m, 3M and 4m on both sides of the shield, so as to determine the reasonable lateral reinforcement scope, and provide some reference suggestions for the engineering construction and the theoretical research. The research results are as follows: (1) the shield construction project in Ma'anshan Park station is in the high water pressure sand layer, in the upper soft and hard stratum, the stratum has the characteristics of large permeability coefficient, poor construction parameter control, poor bearing capacity of the formation and so on. The three heavy pipe high pressure jet grouting pile reinforcement method is suitable for sand soil, sand gravel, silt and soft clay soil and so on. The rotary jet pile has high strength, good durability, simple operation, good irrigability, wide material source, low price and so on. It is suitable for soil reinforcement of the shield construction project of Ma'anshan Park station. (2) the theory of elastic thin plate, the theory of soil slip instability, the related knowledge of the limit equilibrium theory of soil disturbance and the reinforcement of the end of the loose circle By structural analysis, the corresponding mechanical calculation model is set up, and the theoretical solution of the reinforcement range of the end soil is derived through the elastic mechanics, the knowledge of higher soil mechanics and the analytical method of higher mathematics, and the example of the Ma'anshan Park Station project is analyzed. The results show that the difference between the longitudinal and the two sides of the tunnel is small, compared with the actual reinforcement. There is a deviation in the calculation of the sandy soil and the carbonaceous ash at the bottom of the arch at the bottom of the tunnel. The main reason may be that there is no consideration of the actual geological conditions and the influence of the soil reinforcement. (3) it is known from the numerical simulation results that the displacement field, the broken field and stress field, and the water stop requirements of the shield originating from the different longitudinal and transverse reinforcement range are considered comprehensively. Under the premise, combined with the actual engineering geological conditions and theoretical research results, it is finally determined that the soil reinforcement at the beginning end of the shield is 10m, the length of lateral reinforcement is 3M, the depth direction is reinforced at the top of the tunnel, and 5m is reinforced at the top of the tunnel. The construction quality can be satisfied as long as the quality of the project is ensured. Strength and stability requirements. (4) this study has a certain reference and application value for the shield construction of subway tunnels in Guangzhou or other similar high water pressure sand soil, soft and hard stratum construction conditions.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U231.3;U455.43
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉潯;范云中;豐土根;陸躍;;無(wú)錫地鐵盾構(gòu)始發(fā)風(fēng)險(xiǎn)分析[J];水利與建筑工程學(xué)報(bào);2013年03期
2 翟志國(guó);;城市大直徑泥水盾構(gòu)始發(fā)技術(shù)淺談[J];科技資訊;2009年04期
3 于建軍;;地鐵盾構(gòu)始發(fā)負(fù)環(huán)管片組裝及拆除施工技術(shù)[J];鐵道技術(shù)監(jiān)督;2010年03期
4 馮義;陳壽根;王稼祥;;深圳地鐵五號(hào)線盾構(gòu)始發(fā)掘進(jìn)技術(shù)研究[J];建筑機(jī)械化;2010年08期
5 呂傳田;翟志國(guó);蘇清貴;;北京鐵路地下直徑線盾構(gòu)始發(fā)技術(shù)[J];中國(guó)工程科學(xué);2010年12期
6 丁烈云;李煒明;陳曉陽(yáng);;武漢地鐵盾構(gòu)始發(fā)數(shù)值計(jì)算與監(jiān)測(cè)分析[J];鐵道工程學(xué)報(bào);2011年03期
7 滕長(zhǎng)浪;;盾構(gòu)始發(fā)與到達(dá)風(fēng)險(xiǎn)分析[J];科技資訊;2011年09期
8 杜建林;魏鑫;;盾構(gòu)始發(fā)端頭連續(xù)墻成槽過(guò)程卡錘事故的處理[J];廣州建筑;2011年01期
9 潘遠(yuǎn)麗;;淺埋全斷面動(dòng)水砂層盾構(gòu)始發(fā)方法探討[J];甘肅水利水電技術(shù);2011年05期
10 齊敦典;;無(wú)后置出土口的盾構(gòu)始發(fā)方案[J];建筑技術(shù);2012年02期
相關(guān)會(huì)議論文 前10條
1 欒文偉;肖宗莉;吳亮;;盾構(gòu)始發(fā)過(guò)程中對(duì)徑向土體擾動(dòng)范圍的研究[A];2011中國(guó)盾構(gòu)技術(shù)學(xué)術(shù)研討會(huì)論文集[C];2011年
2 趙運(yùn)臣;;盾構(gòu)始發(fā)與到達(dá)方法綜述[A];中國(guó)土木工程學(xué)會(huì)第十三屆年會(huì)暨隧道及地下工程分會(huì)第十五屆年會(huì)論文集[C];2008年
3 陶芳良;;盾構(gòu)始發(fā)受阻及處理技術(shù)[A];第二屆隧道掘進(jìn)機(jī)(盾構(gòu)、TBM)專業(yè)委員會(huì)第一次學(xué)術(shù)研討會(huì)暨中鐵隧道集團(tuán)城市盾構(gòu)項(xiàng)目管理、施工技術(shù)、設(shè)備維保交流會(huì)論文集[C];2011年
4 胡俊;;盾構(gòu)始發(fā)端頭化學(xué)加固范圍的數(shù)值模擬研究[A];第十二屆海峽兩岸隧道與地下工程學(xué)術(shù)與技術(shù)研討會(huì)論文集[C];2013年
5 高家瑞;賈建兵;;長(zhǎng)沙地鐵隧道小曲線盾構(gòu)始發(fā)技術(shù)[A];第二屆隧道掘進(jìn)機(jī)(盾構(gòu)、TBM)專業(yè)委員會(huì)第一次學(xué)術(shù)研討會(huì)暨中鐵隧道集團(tuán)城市盾構(gòu)項(xiàng)目管理、施工技術(shù)、設(shè)備維保交流會(huì)論文集[C];2011年
6 楊瓊鵬;;軟弱地層盾構(gòu)始發(fā)及到達(dá)施工技術(shù)[A];第二屆隧道掘進(jìn)機(jī)(盾構(gòu)、TBM)專業(yè)委員會(huì)第一次學(xué)術(shù)研討會(huì)暨中鐵隧道集團(tuán)城市盾構(gòu)項(xiàng)目管理、施工技術(shù)、設(shè)備維保交流會(huì)論文集[C];2011年
7 翟志國(guó);黃學(xué)軍;;城市大直徑泥水盾構(gòu)始發(fā)關(guān)鍵技術(shù)[A];第二屆隧道掘進(jìn)機(jī)(盾構(gòu)、TBM)專業(yè)委員會(huì)第一次學(xué)術(shù)研討會(huì)暨中鐵隧道集團(tuán)城市盾構(gòu)項(xiàng)目管理、施工技術(shù)、設(shè)備維保交流會(huì)論文集[C];2011年
8 李治國(guó);周明發(fā);王海;王書(shū)雄;李明;;海河共同溝隧道盾構(gòu)始發(fā)段注漿技術(shù)[A];自主創(chuàng)新與持續(xù)增長(zhǎng)第十一屆中國(guó)科協(xié)年會(huì)論文集(2)[C];2009年
9 張則忠;張自太;;廣州軌道交通6號(hào)線某區(qū)間全斷面砂層泥水加壓平衡盾構(gòu)始發(fā)技術(shù)[A];2011中國(guó)盾構(gòu)技術(shù)學(xué)術(shù)研討會(huì)論文集[C];2011年
10 路剛;;盾構(gòu)始發(fā)端頭土體加固施工技術(shù)[A];城市地下空間開(kāi)發(fā)與地下工程施工技術(shù)高層論壇論文集[C];2004年
相關(guān)重要報(bào)紙文章 前3條
1 王馨 記者 趙丹 王小剛;地鐵一號(hào)線首臺(tái)過(guò)江盾構(gòu)始發(fā)[N];南昌日?qǐng)?bào);2012年
2 通訊員 邱開(kāi)禎 李欣潔;廈門(mén)市軌道交通首臺(tái)盾構(gòu)始發(fā)[N];中國(guó)鐵道建筑報(bào);2014年
3 趙永生;盾構(gòu)始發(fā)側(cè)壁支護(hù)體系創(chuàng)新[N];中國(guó)建設(shè)報(bào);2014年
相關(guān)博士學(xué)位論文 前2條
1 趙寶虎;沖擊問(wèn)題實(shí)驗(yàn)應(yīng)力分析與盾構(gòu)始發(fā)反力架監(jiān)測(cè)[D];天津大學(xué);2009年
2 胡俊;高水壓砂性土層地鐵大直徑盾構(gòu)始發(fā)端頭加固方式研究[D];南京林業(yè)大學(xué);2012年
相關(guān)碩士學(xué)位論文 前6條
1 宋旱云;深埋盾構(gòu)始發(fā)洞口土體穩(wěn)定性及施工方法研究[D];北京建筑大學(xué);2015年
2 柳林;圍護(hù)結(jié)構(gòu)及土層在盾構(gòu)始發(fā)過(guò)程中的力學(xué)行為研究[D];石家莊鐵道大學(xué);2015年
3 夏洋洋;廣州地鐵盾構(gòu)施工端頭預(yù)加固合理范圍研究及應(yīng)用[D];蘭州交通大學(xué);2015年
4 李博;盾構(gòu)始發(fā)對(duì)圍巖穩(wěn)定性影響分析[D];安徽建筑大學(xué);2014年
5 殷黎明;砂卵石地層盾構(gòu)始發(fā)端頭土體加固研究[D];中南大學(xué);2013年
6 石研玉;小斷面泥水越江盾構(gòu)始發(fā)與接收關(guān)鍵技術(shù)研究[D];西南交通大學(xué);2014年
,本文編號(hào):2161997
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2161997.html