軌道交通U型梁的截面優(yōu)化設(shè)計
[Abstract]:U beam is the most novel viaduct bridge type in urban rail transit. It has been applied more and more at home and abroad. U beam is a new type of prestressed concrete bridge composed of bottom slab, web plate and crossbeam. It has the characteristics of saving investment, beautiful appearance, high and low rail surface, short construction period and so on. The cross section of U-shaped beam is relatively special, the web plate and bottom plate are thin, and the section is open upward as a whole. As a result, the torsional stiffness is worse than that of the traditional beam section, and the traditional U-shaped beam has a series of problems, such as miscellaneous force, more fabrication steps, and complicated construction process, which has limited the use of the U-shaped beam in a wider range. Moreover, at present, the U-beam is in the initial stage in the rail transit of our country, the research of U-beam is not much, and the research of section optimization of U-beam at home and abroad is very few. In order to make the U-beam more economical and applicable and to make the U-beam be better applied in urban rail transit, it is necessary to analyze the mechanical characteristics of the U-beam, which is particularly important for the cross-section optimization design of U-beam. The most basic requirement of bridge design is to ensure bridge safety, applicability and economy. The optimum design can make the best use of the properties of the material, the best coordination of each unit within the unit, and the standard safety degree of each unit. At the same time, the optimal design is an effective way to realize the ultimate goal of design safety and economy by making scientific and reasonable decision for the structural integrity scheme design. Genetic algorithm (GA) is one of the most widely used mathematical methods for cross-section optimization. It is a parallel and efficient way of searching for the whole, which is based on the theory of evolution of survival of the fittest and the theory of biogenetics, and has a wide range of applications. The optimization results are accurate and so on. In this paper, taking the U-beam bridge in a Shanghai rail transit as the engineering background, the finite element analysis software MIDAS CIVIL and the mathematical model calculation software MATLAB are used to optimize the section of the U-shaped beam by genetic algorithm. Using the beam element method to establish a model to study and compare the behavior of U-shaped beams with different cross-sections, the optimized sections which accord with the specifications and satisfy the stress conditions are obtained. The main contents are as follows: (1) by analyzing the stress characteristics of the U-shaped beam, the parameters of the section are determined. For U-beam, the variables that determine the stress characteristics of the structure are beam height, web thickness, bottom plate thickness and prestressed reinforcement area. Four different cross-section parameters determine the cross-section shape of U-shaped beam. It also has different influence on the structure stress. (2) by using the genetic algorithm toolbox, the mathematical model, the objective function, the design variable and the constraint condition are obtained from the practical problems of the engineering itself. In this paper, the manufacturing cost of prestressed U-beam is taken as the objective function, the strength requirement of normal section is taken as the constraint condition, the restriction of structural size and the stress in construction and use stage are taken as the constraint conditions, and the beam height of the section of U-beam is taken as the constraint condition, respectively. The thickness of web plate, the thickness of bottom slab and the area of prestressed reinforcement are the design variables. The optimum section form is obtained by using genetic algorithm to calculate the mathematical model. (3) combining the above data, By using MIDAS CIVIL software, the cross-section before and after optimization is modeled by the beam element method, and the stress characteristics of the section under different parameters are compared and calculated. The optimum section is obtained by comparison, and the optimized section form is analyzed after checking and calculating.
【學位授予單位】:山東建筑大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:U442.5
【相似文獻】
相關(guān)期刊論文 前10條
1 張文修,梁怡;遺傳算法的數(shù)學基礎(chǔ)[J];西安交通大學學報;2000年10期
2 楊艷麗,史維祥;一種新的優(yōu)化算法—遺傳算法的設(shè)計[J];液壓氣動與密封;2001年02期
3 王毅,曹樹良;遺傳算法在并聯(lián)水泵系統(tǒng)運行優(yōu)化中的應(yīng)用[J];流體機械;2003年10期
4 趙義紅,李正文,何其四;生物信息處理系統(tǒng)遺傳算法探討[J];成都理工大學學報(自然科學版);2004年05期
5 李凡,黃數(shù)林,張東風;一種改進的多倍體遺傳算法[J];華中科技大學學報(自然科學版);2005年01期
6 韋雪潔;黎明;劉高航;田貴超;;注入式的遺傳算法的分析與研究[J];南昌航空工業(yè)學院學報(自然科學版);2006年01期
7 閻綱;;遺傳算法及其仿真[J];湖南工程學院學報(自然科學版);2006年04期
8 ;遺傳算法[J];電網(wǎng)與清潔能源;2008年10期
9 吳玫;陸金桂;;遺傳算法的研究進展綜述[J];機床與液壓;2008年03期
10 李培植;肖利明;于靜濤;;基于遺傳算法的結(jié)構(gòu)優(yōu)化方法[J];公路交通科技(應(yīng)用技術(shù)版);2008年08期
相關(guān)會議論文 前10條
1 陳家照;廖海濤;張中位;羅寅生;;一種改進的遺傳算法及其在路徑規(guī)劃中的應(yīng)用[A];2009系統(tǒng)仿真技術(shù)及其應(yīng)用學術(shù)會議論文集[C];2009年
2 李國云;劉穎;薛梅;鄔志敏;;遺傳算法在高溫空冷冷凝器優(yōu)化設(shè)計中的應(yīng)用[A];第五屆全國制冷空調(diào)新技術(shù)研討會論文集[C];2008年
3 王志軍;李守春;張爽;;改進的遺傳算法在反演問題中的應(yīng)用[A];新世紀 新機遇 新挑戰(zhàn)——知識創(chuàng)新和高新技術(shù)產(chǎn)業(yè)發(fā)展(上冊)[C];2001年
4 任燕翔;姜立;劉連民;從滋慶;;改進遺傳算法在三維日照方案優(yōu)化中的應(yīng)用[A];工程三維模型與虛擬現(xiàn)實表現(xiàn)——第二屆工程建設(shè)計算機應(yīng)用創(chuàng)新論壇論文集[C];2009年
5 韓娟;;遺傳算法概述[A];第三屆河南省汽車工程科技學術(shù)研討會論文集[C];2006年
6 龐國仲;王元西;;基于遺傳算法控制步長的定性仿真方法[A];'2000系統(tǒng)仿真技術(shù)及其應(yīng)用學術(shù)交流會論文集[C];2000年
7 張忠華;楊淑瑩;;基于遺傳算法的聚類設(shè)計[A];全國第二屆信號處理與應(yīng)用學術(shù)會議?痆C];2008年
8 何翠紅;區(qū)益善;;遺傳算法及其在計算機編程中的應(yīng)用[A];1995年中國智能自動化學術(shù)會議暨智能自動化專業(yè)委員會成立大會論文集(下冊)[C];1995年
9 靳開巖;張乃堯;;幾種實用遺傳算法及其比較[A];1996年中國智能自動化學術(shù)會議論文集(下冊)[C];1996年
10 王宏剛;曾建潮;李志宏;;攝動遺傳算法[A];1996年中國智能自動化學術(shù)會議論文集(下冊)[C];1996年
相關(guān)重要報紙文章 前1條
1 林京;《神經(jīng)網(wǎng)絡(luò)和遺傳算法在水科學領(lǐng)域的應(yīng)用》將面市[N];中國水利報;2002年
相關(guān)博士學位論文 前10條
1 Amjad Mahmood;半監(jiān)督進化集成及其在網(wǎng)絡(luò)視頻分類中的應(yīng)用[D];西南交通大學;2015年
2 李險峰;基于改進遺傳算法的汽車裝配生產(chǎn)線平衡問題研究[D];北京科技大學;2017年
3 周輝仁;遞階遺傳算法理論及其應(yīng)用研究[D];天津大學;2008年
4 郝國生;交互式遺傳算法中用戶的認知規(guī)律及其應(yīng)用[D];中國礦業(yè)大學;2009年
5 侯格賢;遺傳算法及其在跟蹤系統(tǒng)中的應(yīng)用研究[D];西安電子科技大學;1998年
6 馬國田;遺傳算法及其在電磁工程中的應(yīng)用[D];西安電子科技大學;1998年
7 唐文艷;結(jié)構(gòu)優(yōu)化中的遺傳算法研究和應(yīng)用[D];大連理工大學;2002年
8 周激流;遺傳算法理論及其在水問題中應(yīng)用的研究[D];四川大學;2000年
9 劉冀成;基于改進遺傳算法的生物電磁成像與磁場聚焦應(yīng)用研究[D];四川大學;2005年
10 袁麗華;基于物種進化的遺傳算法研究[D];南京航空航天大學;2009年
相關(guān)碩士學位論文 前10條
1 張英俐;基于遺傳算法的作曲系統(tǒng)研究[D];山東師范大學;2006年
2 鐘海萍;原對偶遺傳算法與蟻群算法的一種融合算法[D];暨南大學;2013年
3 李志添;模糊遺傳算法與資源優(yōu)化配置的預測控制[D];華南理工大學;2015年
4 王琳琳;新型雙層液壓轎運車車廂的設(shè)計研究[D];上海工程技術(shù)大學;2015年
5 李海全;基于遺傳算法的建筑體形系數(shù)及迎風面積比優(yōu)化方法研究[D];華南理工大學;2015年
6 彭騫;基于遺傳算法的山區(qū)高等級公路縱斷面智能優(yōu)化方法研究[D];昆明理工大學;2015年
7 周玉林;基于小波分析和遺傳算法的配電網(wǎng)故障檢測[D];昆明理工大學;2015年
8 郭頌;基于粗糙集和遺傳算法的數(shù)字管道生產(chǎn)管理系統(tǒng)研究[D];昆明理工大學;2015年
9 吳南;數(shù)值逼近遺傳算法的研究應(yīng)用[D];華南理工大學;2015年
10 于光帥;一類優(yōu)化算法的改進研究與應(yīng)用[D];渤海大學;2015年
,本文編號:2143923
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2143923.html