北京市電動(dòng)出租車(chē)充電設(shè)施選址優(yōu)化
[Abstract]:With the problem of environment and energy shortage becoming more and more serious in recent years, the enthusiasm for energy structure adjustment and environmental protection technology research in the world is continuously rising. Because the traditional fuel gas vehicle is the main source of environmental pollution and energy consumption, the clean electric vehicle driven by electric energy has received wide attention and favor. At home and abroad, a large number of electric vehicles have been put into the market as a substitute for traditional vehicles. However, due to the limitation of the electric vehicle technology, the electric vehicle charging station can not use the traditional gas station construction mode and the same station density because of its short mileage and long charging time. As a result, the existing charging stations are difficult to meet the increasing demand for electric vehicles, which limits the further application and development of electric vehicles. Aiming at the problem of location of electric taxi charging station in Beijing, this paper simulates the process of electric taxi charging demand by Monte Carlo simulation based on the characteristic parameters of passenger travel and electric taxi operation. The spatiotemporal distribution of charging demand of electric taxi which can guarantee the normal travel of passengers is identified, the service range and capacity of charging station are divided by voronoi diagram method, and the distribution of charging demand is known. The cost function of the charging station construction and operation constitutes the objective function of the location model, and the solution of the low constraint location model is obtained by using the basic particle swarm optimization algorithm. The comparison with the solution of P median model verifies the validity of the low constraint location model, and introduces Tabu Particle Swarm Optimization (Tabu) algorithm to improve the accuracy of the algorithm, and analyzes the sensitivity of the parameters that affect the result of the location model. The optimal solution of the location model is obtained. In this paper, the probability distribution of passenger travel distance and time parameters and electric taxi battery state parameters is used to make the simulation process accord with the true probability of occurrence of events, thus avoiding the study of complex electric taxi running trajectory. The difficulty of data acquisition and data redundancy are reduced, and the accuracy of charge demand prediction is improved. A low-constraint location model based on particle swarm optimization algorithm is constructed to ensure that the accuracy of the model solution can meet the requirements. The requirements of model constraints are reduced, and the complexity of the model is simplified, so that the number of parameters that the model needs to adjust when the external conditions change is less, and the model can better deal with the location environment where the conditions change quickly. It avoids the complicated process of reconstructing the constraint conditions, enhances the applicability and ease of use of the model, and improves the accuracy of the algorithm by using Tabu Particle Swarm Optimization (Tabu) algorithm under the premise of ensuring the speed of solving the algorithm. The algorithm can avoid falling into the local optimal condition and provide a theoretical basis for the location model under low constraint conditions to meet the accuracy of the solution.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:U491.8
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 舒雋;唐剛;韓冰;;電動(dòng)汽車(chē)充電站最優(yōu)規(guī)劃的兩階段方法[J];電工技術(shù)學(xué)報(bào);2017年03期
2 陳娟;黃元生;魯斌;;區(qū)域能源互聯(lián)網(wǎng)信息物理建模及控制策略[J];電力自動(dòng)化設(shè)備;2016年12期
3 劉丹;解強(qiáng);張?chǎng)?王海林;閆志勇;楊宏偉;郝鄭平;;北京冬季霧霾頻發(fā)期VOCs源解析及健康風(fēng)險(xiǎn)評(píng)價(jià)[J];環(huán)境科學(xué);2016年10期
4 陳奇芳;劉念;陳征;張建華;;考慮充電需求與隨機(jī)事件的光伏充電站實(shí)時(shí)運(yùn)行策略[J];電工技術(shù)學(xué)報(bào);2016年18期
5 李玉敏;張友國(guó);;中國(guó)碳排放影響因素的空間分解分析[J];中國(guó)地質(zhì)大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2016年03期
6 Houssem Eddine Hadji;Malika Babes;;Integrating Tabu Search in Particle Swarm Optimization for the Frequency Assignment Problem[J];中國(guó)通信;2016年03期
7 姜大膀;劉葉一;;溫室效應(yīng)會(huì)使地球溫度上升多高?——關(guān)于平衡氣候敏感度[J];科學(xué)通報(bào);2016年07期
8 潘竟虎;張文;王春娟;;2011—2013年中國(guó)霧霾易發(fā)生期間API的分布格局[J];環(huán)境工程學(xué)報(bào);2016年03期
9 黃小慶;陳頡;田世明;曹一家;楊夯;江磊;;電動(dòng)汽車(chē)充電站規(guī)劃、運(yùn)行中的大數(shù)據(jù)集成應(yīng)用[J];電網(wǎng)技術(shù);2016年03期
10 龔;張杰;藍(lán)金輝;;霧霾情況下路網(wǎng)模型及霧霾對(duì)交通路網(wǎng)的影響[J];交通運(yùn)輸系統(tǒng)工程與信息;2015年05期
相關(guān)會(huì)議論文 前1條
1 張華民;;電動(dòng)汽車(chē)及充電站技術(shù)現(xiàn)狀及前景[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場(chǎng)摘要集[C];2010年
相關(guān)博士學(xué)位論文 前2條
1 馮亮;電動(dòng)汽車(chē)充電站規(guī)劃研究[D];天津大學(xué);2013年
2 姜星莉;經(jīng)濟(jì)全球化背景下中國(guó)能源安全問(wèn)題研究[D];武漢大學(xué);2010年
相關(guān)碩士學(xué)位論文 前5條
1 李亞芬;規(guī);瘏^(qū)域電動(dòng)乘用車(chē)負(fù)荷估算研究[D];北京交通大學(xué);2014年
2 王輝;電動(dòng)汽車(chē)充電站規(guī)劃與運(yùn)營(yíng)研究[D];浙江大學(xué);2013年
3 張國(guó)亮;城市內(nèi)和城市間電動(dòng)汽車(chē)充電站的選址布局研究[D];天津大學(xué);2012年
4 張菁菁;電動(dòng)汽車(chē)充電設(shè)施建設(shè)與發(fā)展的多方博弈分析[D];北京交通大學(xué);2011年
5 文凱;借鑒國(guó)際經(jīng)驗(yàn)發(fā)展我國(guó)新能源汽車(chē)產(chǎn)業(yè)研究[D];東北財(cái)經(jīng)大學(xué);2010年
,本文編號(hào):2137814
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2137814.html