基于UKF的橋梁空間結(jié)構(gòu)損傷識別研究
[Abstract]:Under the influence of natural environment and human factors, the bridge structure will be damaged during normal use and will accumulate gradually with time, which may eventually lead to serious engineering accidents. Before the accident happens, it is of great value to monitor the structure health, identify the structural damage and master the working state of the structure to ensure the safety of the structure and to prevent the sudden accident. The unscented Kalman filter (UKF) based on UT transform is a recursive model correction method among many damage identification methods. Compared with the traditional time domain method, the UKF can obtain the optimal state estimation by recursive method, and compared with the extended Kalman filtering method, the parameter identification problem of nonlinear systems can be obtained. It is not necessary to solve complex Jacobian matrix and has higher accuracy. In view of the ill-posed nature of UKF in the inverse problem of structural damage identification, a new UKF method combining pl norm regularization is proposed based on pseudo-measurement technique, which can effectively use different prior information of bridge damage to improve the damage identification effect. Based on this, the UKF combined with regularization is applied to bridge damage identification considering spatial characteristics. The specific research works are as follows: (1) the state vector of UKF is constructed by using modal coordinate instead of structural node response, the dimension of state vector is reduced effectively by modal truncation technique, and the damage parameter is added to the state vector. The problem of mixed identification of structural state and structural parameters is discussed, and then the free vibration observation value of the structure is used. In order to make full use of the prior information of bridge damage obtained by manual inspection, this paper is based on pseudo-measurement technology. The UKF combined with pl norm regularization method is proposed to identify structural damage. According to the damage characteristics of structures, different regularization methods can be chosen, which can effectively alleviate the ill-posed problem solving and improve the accuracy of damage identification. In this paper, the numerical example of simply supported beam is given to compare the two pl regularization methods, and the identification effect and the applicable damage of the different regularization methods are analyzed, and then the local damage characteristic structure is considered Taking plane truss as the representative, the validity of UKF method combined with 1l norm regularization is verified. (3) in the damage identification analysis of bridge structures, the simplified beam structure is the most common analysis model, but the actual bridges are three-dimensional structures. It has spatial characteristics. When considering the spatial bridge structure, the structural deformation, damage zoning and measuring point arrangement are different from the one-dimensional beam structure. In this paper, two kinds of representative bridges, slab girder bridge and T beam bridge, are selected as research objects to study damage identification. Firstly, the structure of slab girder bridge with spatial characteristics is established by ANSYS. Considering the damage of the structure as local damage, the recognition effect of UKF combined with 1l norm regularization method for slab girder bridge is studied. In the analysis of T-beam bridge, the wet joint, transverse diaphragm and main girder are respectively used as the damage objects to identify the damage. At the same time, the effects of different modal information, different number of zones and different layout of measuring points on the identification of wet joints are analyzed. The results show that the UKF combined with regularization method can effectively identify the damage, and has strong robustness and anti-noise ability.
【學(xué)位授予單位】:南昌大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U441.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張春麗;呂中榮;;基于響應(yīng)靈敏度分析的橋梁結(jié)構(gòu)損傷和車輛參數(shù)的識別[J];振動與沖擊;2016年09期
2 張喜剛;劉高;馬軍海;吳宏波;付佰勇;高原;;中國橋梁技術(shù)的現(xiàn)狀與展望[J];科學(xué)通報(bào);2016年Z1期
3 邱飛力;張立民;張衛(wèi)華;;基于模態(tài)柔度矩陣的結(jié)構(gòu)損傷識別[J];噪聲與振動控制;2015年04期
4 雷鷹;李青;;基于擴(kuò)展卡爾曼濾波的框架梁柱節(jié)點(diǎn)地震損傷識別[J];土木工程學(xué)報(bào);2013年S1期
5 杜永峰;李萬潤;李慧;劉迪;;基于時間序列分析的結(jié)構(gòu)損傷識別[J];振動與沖擊;2012年12期
6 劉娟;黃維平;石湘;;基于遺傳算法的海洋平臺損傷診斷[J];振動.測試與診斷;2012年02期
7 尹強(qiáng);周麗;;基于EKF方法的橡膠隔震支座參數(shù)識別實(shí)驗(yàn)研究[J];南京航空航天大學(xué)學(xué)報(bào);2012年01期
8 周麗;汪新明;尹強(qiáng);;利用序貫非線性最小二乘技術(shù)識別隔震支座模型的參數(shù)[J];振動工程學(xué)報(bào);2010年01期
9 謝強(qiáng);唐和生;邸元;;SVD-Unscented卡爾曼濾波的非線性結(jié)構(gòu)系統(tǒng)識別[J];應(yīng)用力學(xué)學(xué)報(bào);2008年01期
10 朱勁松;肖汝誠;;基于定期檢測與遺傳算法的大跨度斜拉橋損傷識別[J];土木工程學(xué)報(bào);2006年05期
相關(guān)博士學(xué)位論文 前3條
1 劉宇飛;基于模型修正與圖像處理的多尺度結(jié)構(gòu)損傷識別[D];清華大學(xué);2015年
2 孫杰;基于多模態(tài)參數(shù)的橋梁結(jié)構(gòu)損傷識別方法研究[D];武漢理工大學(xué);2013年
3 譚冬梅;基于小波分析的空間桿系結(jié)構(gòu)的損傷識別[D];武漢理工大學(xué);2007年
相關(guān)碩士學(xué)位論文 前5條
1 楊洋;基于時域響應(yīng)結(jié)構(gòu)有限元模型修正方法研究[D];蘭州理工大學(xué);2016年
2 洪祖江;基于正則化有限元模型修正方法的結(jié)構(gòu)損傷識別[D];南昌大學(xué);2013年
3 張健;自適應(yīng)子結(jié)構(gòu)擬動力試驗(yàn)方法[D];哈爾濱工業(yè)大學(xué);2010年
4 張吉剛;基于模態(tài)應(yīng)變能的梁橋損傷識別[D];西南交通大學(xué);2007年
5 武魏娜;土木工程結(jié)構(gòu)參數(shù)識別時域法研究[D];天津大學(xué);2006年
,本文編號:2133436
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2133436.html