天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 路橋論文 >

特哈馬不同含泥量風(fēng)積沙路基填料特性試驗(yàn)研究

發(fā)布時(shí)間:2018-07-16 21:35
【摘要】:土木工程項(xiàng)目的施工與維護(hù)取決于場地、周圍環(huán)境和氣候的變化。風(fēng)積沙地區(qū)的公路、鐵路和基礎(chǔ)設(shè)施設(shè)計(jì)、施工和維修都會(huì)存在特有的問題,例如:防沙、固沙、防風(fēng)等。由于人口、經(jīng)濟(jì)和其它因素的作用,在沙漠或沙漠化地區(qū)修建基礎(chǔ)設(shè)施是未來趨勢。各地沙漠的形成環(huán)境、氣候及風(fēng)沙條件有差異,地質(zhì)、風(fēng)積沙特性以及地表植被狀況也有較大差別。遍布該地區(qū)的風(fēng)積沙地基是否需要處理、能否用作路基填料,都是需要進(jìn)行試驗(yàn)研究的技術(shù)問題,以便更好理解其工程特性,提出合理的解決方法。也門共和國需要在沙漠地區(qū)修建公路,不可避免會(huì)遇到風(fēng)積沙作為路基填料的問題。2003年修建的總長170km的荷臺(tái)達(dá)—摩卡高速公路,沿著紅海海岸線走向,穿越廣闊的沙土地帶,這意味著必需要用這種沙土作為路基填料。荷臺(tái)達(dá)位于也門西海岸中部卡希布灣內(nèi),沿紅海海岸向東延伸至山腳下,海拔從海平面上升至250m。北緯15.8-13.38,東經(jīng)43.38-42.35,總面積約13336平方公里,是也門重要的農(nóng)業(yè)生產(chǎn)區(qū)。該地區(qū)屬熱帶沙漠氣候,盛行西南風(fēng)。年平均氣溫19~40攝氏度。8~9月份常出現(xiàn)強(qiáng)風(fēng)及沙暴。全年平均降雨量達(dá)100mm。荷臺(tái)達(dá)海岸平原地基土是第四紀(jì)沖積土,包括風(fēng)積土和沖積土。風(fēng)積沙土經(jīng)過處理可以作為路基填料,這就需要試驗(yàn)研究來解決這類工程技術(shù)問題。當(dāng)前,需要對不同含泥率的風(fēng)積沙土特性進(jìn)行試驗(yàn)研究。本文參考國內(nèi)外研究成果,結(jié)合荷臺(tái)達(dá)—摩卡公路,對不同含泥率的風(fēng)積沙土特性進(jìn)行系統(tǒng)的試驗(yàn)研究。主要研究內(nèi)容及技術(shù)路線如下:(1)利用室內(nèi)試驗(yàn),研究了不同含泥量的風(fēng)積沙物理特性,對不同含泥量的風(fēng)積沙工程地質(zhì)特性進(jìn)行評(píng)價(jià)。(2)對不同含泥量風(fēng)積沙進(jìn)行壓實(shí)試驗(yàn),研究不同含泥量風(fēng)積沙壓實(shí)特性,分析其壓實(shí)機(jī)理。(3)通過一系列強(qiáng)度和壓縮試驗(yàn)研究,探索了不同含泥量風(fēng)積沙強(qiáng)度特性和變形特性,研究了不同含泥量風(fēng)積沙的強(qiáng)度特性和變形特性的影響因素及作用機(jī)理。(4)研究總結(jié)不同含沙量風(fēng)積沙的力學(xué)特性,提出不同含泥量風(fēng)積沙的力學(xué)指標(biāo)變化范圍,并提出不同含泥量風(fēng)積沙最大干密度的試驗(yàn)方法。(5)根據(jù)試驗(yàn)結(jié)果,對不同含泥量風(fēng)積沙路用性能進(jìn)行綜合評(píng)價(jià),確定出適合作為路基填料的最佳含泥量范圍。結(jié)合室內(nèi)試驗(yàn)研究結(jié)果,深入分析不同含沙量風(fēng)積沙的物理特性、壓實(shí)性、強(qiáng)度特性和變形特性,綜合評(píng)價(jià)了不同含沙量風(fēng)積沙作為路基填料的工程特性,提出了合適的含沙量范圍。具體研究成果如下:1.不同含泥量的風(fēng)積沙的物理特性試驗(yàn)研究通過顆粒級(jí)配試驗(yàn)可發(fā)現(xiàn),荷臺(tái)達(dá)—摩卡高速公路含泥風(fēng)積沙的粒徑主要分布在0.6~0.074mm范圍內(nèi),屬于中細(xì)沙;各沙樣的不均勻系數(shù)Cu顯示,荷臺(tái)達(dá)—摩卡高速公路含泥風(fēng)積沙的不均勻系數(shù)均較小,說明顆粒級(jí)配不良,粒度均比較均勻。為了研究荷臺(tái)達(dá)—摩卡高速公路不同含泥量風(fēng)積沙的工程特性,制備不同含泥量(0.074mm)的風(fēng)積沙試樣,制備了含泥量分別為0.5%,5%,10%,50%,55%和80%7種試樣。不均勻系數(shù)Cu反映的是大小不同粒組分布情況。Cu越大表明土粒粒徑的分布范圍越大,其級(jí)配就越良好,作為路基填料時(shí),則較容易得到較大的密實(shí)度。曲率Cc表明的是粒徑累積曲線的分布范圍,反映了曲線的整體形狀。一般認(rèn)為:當(dāng)土樣同時(shí)滿足Cu5和Cc=l~3兩個(gè)條件時(shí),則屬于級(jí)配良好。級(jí)配試驗(yàn)結(jié)果顯示:不同含泥量風(fēng)積沙的不均勻系數(shù)Cu大多小于5,只有含泥量為0.5%時(shí),其不均勻系數(shù)Cu=5.13;所有試樣的曲率系數(shù)Cc均在1~3之間,由此可見,大部分的風(fēng)積沙試樣級(jí)配不良。采用比重瓶法對不同含泥量風(fēng)積沙試樣進(jìn)行比重試驗(yàn)。試驗(yàn)結(jié)果表明:隨著試樣含泥量的增大,試樣土粒比重也是逐漸增大的。土的界限含水量是指土的液限和塑限,土的液限和塑限主要是用于劃分土類、及公路設(shè)計(jì)和施工中。本文采用聯(lián)合測定法測定所有試樣的液限和塑限。對于含泥量較小的試樣(含泥量4.5%),由于細(xì)顆粒土含量少,可以不考慮其液限和塑限。試驗(yàn)結(jié)果表明:隨著試樣中含泥量的增加,試樣的液限、塑限以及塑性指數(shù)均在增大,這是由于隨著粘性含量的增加,試樣中礦物成分發(fā)生變化,含泥量變化時(shí)土顆粒之間吸附水膜厚度也在變化。由于含泥風(fēng)積沙所在地區(qū)的差異性,其天然干密度也不盡相同。荷臺(tái)達(dá)平原不同含泥量風(fēng)積沙干密度一般在1.56~1.84g/cm3。盡管含泥風(fēng)積沙經(jīng)常處于干旱狀態(tài)下,但其天然含水量一般要比純凈風(fēng)積沙的較高。天然含水量低的地方,含泥風(fēng)積沙含水量可以不足1%,天然含水量高的地方,含泥風(fēng)積沙含水量也不會(huì)超過10%。隨著季節(jié)的變化,含泥風(fēng)積沙里的含水量也會(huì)不斷變化,變化范圍與含泥量有關(guān),如在春季含水量變化幅度為0.2%~4%,在夏季僅為0.1%~1%。由于蒸發(fā)作用,沙漠表層的含水量小,越往下含水量逐漸增大。含泥風(fēng)積沙里少量的水分,對于該地區(qū)的植物生長卻有重要的作用。在降雨量小的地區(qū),含泥風(fēng)積沙的含水量會(huì)更低。荷臺(tái)達(dá)—摩卡高速公路含泥風(fēng)積沙由于含有一定含量的細(xì)粒土,故具有一定的塑性特性,根據(jù)含泥量的不同,各種風(fēng)積沙表現(xiàn)出的塑性程度也不一樣。含泥量小的試樣,塑性低,試樣成型困難,且抗剪強(qiáng)度低。荷臺(tái)達(dá)—摩卡高速公路含泥風(fēng)積沙基本上具有親水性,即顆粒表面對水有一定的吸附作用,隨著含泥量的增加,親水性越來越強(qiáng)烈。含泥量較小時(shí),風(fēng)積沙的滲透性較好,地面水會(huì)很快滲入地層深處,導(dǎo)致地層表層土常處于干燥狀態(tài)。對于荷臺(tái)達(dá)—摩卡高速公路含泥風(fēng)積沙,在含泥量較小時(shí),均不具有濕陷性。含泥量不同,風(fēng)積沙中的毛細(xì)水對路基工程的不利影響程度也不同。因?yàn)楹囡L(fēng)積沙的毛細(xì)現(xiàn)象主要與孔隙比、含泥量、結(jié)合水膜、沙粒的有效粒徑和形狀等有關(guān)。含泥量越大,細(xì)顆粒越多,比表面積越大,顆粒表面親水性強(qiáng),毛細(xì)現(xiàn)象越強(qiáng)烈。2.含泥風(fēng)積沙壓實(shí)特性試驗(yàn)研究為了研究荷臺(tái)達(dá)—摩卡高速公路含泥風(fēng)積沙壓實(shí)特性,本文采用重型標(biāo)準(zhǔn)擊實(shí)試驗(yàn)、干振法和水振法三種不同方法,對不同含泥量內(nèi)積怨沙試樣進(jìn)行壓實(shí)試驗(yàn)。重型標(biāo)準(zhǔn)擊實(shí)試驗(yàn)結(jié)果表明:含泥量在0.56%~9.2%范圍內(nèi),最大干密度在干燥狀態(tài)下出現(xiàn),隨著含水量增大,干密度呈下降趨勢;含泥量在9.2%~51.31%范圍內(nèi),擊實(shí)曲線呈不規(guī)則變化,忽上忽下,干密度總體比含泥量小的風(fēng)積沙要小;當(dāng)含泥量大于55.89%時(shí),擊實(shí)曲線與細(xì)粒土的類似,即含水量小于最優(yōu)含水量時(shí),干密度隨著含水量的增加而增大。含泥風(fēng)積沙最大干密度的變化趨勢是,隨著含泥量的增加,最大干密度呈減小趨勢。干振法試驗(yàn)結(jié)果顯示:含泥量小于51.31%的風(fēng)積沙試樣表現(xiàn)為類似于風(fēng)積沙振動(dòng)性質(zhì),在一定的時(shí)間和振幅下,干密度隨時(shí)間增大,振動(dòng)時(shí)間大約在4~8分鐘內(nèi),試樣達(dá)到最大干密度,之后,干密度隨振動(dòng)時(shí)間減小;含泥量大于51.31%時(shí),含泥風(fēng)積沙干密度隨振動(dòng)時(shí)間一直減小,且干密度較含泥量小于51.31%風(fēng)積沙的小很多;當(dāng)含泥量大于55.87%時(shí),干密度下降更明顯,這也說明振動(dòng)法不適用于細(xì)粒土。含泥量為9.2%時(shí),風(fēng)積沙最大干密度最大,之后,隨含泥量增加,風(fēng)積沙最大干密度減小。水振法試驗(yàn)結(jié)果表明:含泥量小于51.31%時(shí),干密度在4~8分鐘內(nèi)達(dá)到最大值,且含泥量越小干密度總體越大;含泥量大于51.31%時(shí),試樣的干密度整體上小于含泥量小于51.31%試樣的;含泥量小于4.5%時(shí),利用水振法風(fēng)積沙可以得到較大的干密度;水振法試驗(yàn)得到的風(fēng)積沙最大干密度隨含泥量的增大而減小。比較三種試驗(yàn)結(jié)果發(fā)現(xiàn):采用重型擊實(shí)方法時(shí),在含泥量較小時(shí),風(fēng)積沙最大干密度隨含泥量增加而減小,在含泥量為20%~30%范圍內(nèi),風(fēng)積沙最大干密度基本保持穩(wěn)定值不變,含泥量大于30%時(shí),風(fēng)積沙最大干密度隨含泥量增加繼續(xù)減小。采用干振法時(shí),最大干密度在含泥量為0.56%出現(xiàn)最大值,直到含泥量增加至30%左右,最大干密度隨含泥量變化不明顯,當(dāng)含泥量大于30%時(shí),最大干密度隨含泥量增加而減小。水振法試驗(yàn)得到的含泥風(fēng)積沙最大干密度與含泥量變化規(guī)律與重型標(biāo)準(zhǔn)擊實(shí)試驗(yàn)類似,只是當(dāng)含泥量小于30%時(shí),水振法得到的最大干密度比重型標(biāo)準(zhǔn)擊實(shí)試驗(yàn)得到的略大一點(diǎn),當(dāng)含泥量大于30%時(shí),水振法得到的最大干密度隨含泥量的增加而減小得更明顯。當(dāng)含泥量小于30%時(shí),水振法得到的最大干密度最大,干振法得到的最小,當(dāng)含泥量大于30%時(shí),重型標(biāo)準(zhǔn)擊實(shí)試驗(yàn)得到的最大干密度最大,水振法得到的最小?梢,不同含泥量的風(fēng)積沙,應(yīng)采用不同的擊實(shí)方法來獲得更大的干密度。3.含泥風(fēng)積沙的強(qiáng)度特性試驗(yàn)研究本文采用直剪試驗(yàn)、回彈試驗(yàn)和CBR試驗(yàn)研究不同壓實(shí)度、不同含泥量下含泥風(fēng)積沙的強(qiáng)度特性。分析直剪試驗(yàn)結(jié)果得出:荷臺(tái)達(dá)—摩卡高速公路含泥風(fēng)積沙內(nèi)摩擦角在30°~40°之間,內(nèi)摩擦角與壓實(shí)度近似呈線性關(guān)系,通過回歸分析,相關(guān)系數(shù)均在0.9以上,且內(nèi)摩擦角隨壓實(shí)度的增大而增加。對于含泥量小于9.2%的風(fēng)積沙,其內(nèi)摩擦角整體上均大于含泥量大于51.31%的風(fēng)積沙的,含泥量為9.2%時(shí)內(nèi)摩擦角出現(xiàn)最大值。含泥量大于51.31%時(shí),風(fēng)積沙內(nèi)摩擦角隨含泥量增加而減小。含泥風(fēng)積沙粘聚力均較小,且隨含泥量減小而減小。壓實(shí)度對含泥風(fēng)積沙的內(nèi)摩擦角影響明顯,內(nèi)摩擦角隨壓實(shí)度增大而增加;在含泥量小于10%左右時(shí),內(nèi)摩擦角隨含泥量增大而增加,含泥量大于10%時(shí),內(nèi)摩擦角隨含泥量增大而減小;貜椩囼(yàn)結(jié)果表明:含量泥風(fēng)積沙的回彈模量在40MPa~65MPa之間;含泥量小于9.2%時(shí),回彈模量與壓實(shí)度近似呈三次多項(xiàng)式函數(shù)關(guān)系,回彈模量隨壓實(shí)度增加;當(dāng)含泥量大于51.31%時(shí),回彈模量與壓實(shí)度近似呈二次多項(xiàng)式函數(shù)關(guān)系,回彈模量仍隨壓實(shí)度增加。在壓實(shí)度不變的前提下,回彈模量與含量泥量有一定的關(guān)系,含泥量小于9.2%時(shí),回彈模量大小較接近,此時(shí)含泥量對回彈模量影響不明顯,在含泥量為9.2%時(shí),回彈模量整體達(dá)到最大,含泥量在51.31%~84.13%范圍內(nèi)時(shí),回彈模量隨含泥量增大而減小。壓實(shí)度對含泥風(fēng)積沙回彈模量影響顯著,在每個(gè)壓實(shí)度下,回彈模量大約在含泥量為10%時(shí)達(dá)到最大值,含量泥量小于10%時(shí),回彈模量隨含泥量增加而增大,含泥量大于10%時(shí),回彈模量隨含泥量增加而減小,含泥量達(dá)到55%左右時(shí),回彈模量趨于穩(wěn)定。CBR試驗(yàn)結(jié)果表明:含泥量小于9.2%時(shí),CBR與含水量曲線存在峰值,即CBR值先隨含水量的增加而增大,CBR達(dá)到最大值時(shí),又隨含水量的增加而減小,含泥量在51.31%~84.31%范圍內(nèi)時(shí),CBR基本隨含水量增加而增大,但不明顯。CBR最大值對應(yīng)的含水量隨含泥量增加而增大,含泥量為0.56%時(shí),其對應(yīng)的含水量為8%,含泥量為84.31時(shí),其對應(yīng)的含水量為15%左右。在含水量為8%,10%和12%三種情況下,對于含泥量小于9.2%的試樣,浸水和不浸水的CBR值先隨含泥量增大而減小,在含泥量為4.5%時(shí)達(dá)到最小值,之后CBR又隨含泥量增大;含泥量大于9.2%時(shí),浸水和不浸水試樣的CBR值均隨含泥量增加而減小,在含泥量達(dá)到55%左右時(shí),兩種試樣的CBR值均趨于穩(wěn)定;同一含泥量下,不浸水試樣的CBR值大于浸水試樣的。4.含泥風(fēng)積沙的變形特性試驗(yàn)研究采用固結(jié)壓縮試驗(yàn)研究含泥風(fēng)積沙特性。試驗(yàn)結(jié)果表明:孔隙比并不是隨含泥量的增大一直增大的,含泥量在4.5%~9.2%之間時(shí),孔隙比隨含泥量增大而減小,含泥量在51.31~84.31%范圍內(nèi)時(shí),孔隙比隨含泥增加而增大,且孔隙比整體較大;整體孔隙比在含泥量為0.56%時(shí)最小,此時(shí)壓縮系數(shù)也最小;在不同壓實(shí)度下,隨著試樣含泥量的增加,壓縮系數(shù)先減小至最小值,之后隨含泥量逐漸增大;含泥量在10%左右時(shí),壓縮系數(shù)達(dá)到最小值,沁含泥量大于55.31%時(shí),壓縮系數(shù)隨含泥量的增加更明顯。5.含泥風(fēng)積沙路用性能評(píng)價(jià)根據(jù)擊實(shí)試驗(yàn)、直剪試驗(yàn)、回彈模量試驗(yàn)、CBR試驗(yàn)和壓縮試驗(yàn)結(jié)果,分析得出荷臺(tái)達(dá)—摩卡高速公路含泥風(fēng)積沙大致可分為三類:(1)風(fēng)積沙,含泥量小于9.2%;(2)沙、土混合,含泥量在9.2%~55.31%之間;(3)含沙質(zhì)土,含泥量大于55.31%。如果以回彈模量和CBR作為評(píng)價(jià)指標(biāo),含量泥量小于9.2%風(fēng)積沙均能滿足高速公路路床、路堤部位填料的要求;對于含泥量大于9.2%的風(fēng)積沙,可以采用物理改良方法,即往里摻入一定量的純風(fēng)積沙,降低其含泥量,使其達(dá)到路基填料的要求。
[Abstract]:The construction and maintenance of civil engineering projects depend on the site, environment and climate change. The road, railway and infrastructure design, construction and maintenance in the aeolian sand area will have special problems, such as sand prevention, sand fixation, wind protection, and the construction of infrastructure in desert or desertification areas due to the effect of population, economy and other factors. It is a trend in the future. There are differences in the forming environment of desert, climate and wind and sand conditions, geology, the characteristics of aeolian sand and the condition of surface vegetation. Whether the foundation of aeolian sand is needed to be treated and whether it can be used as a subgrade filler is a technical problem that needs to be tested and studied so as to better understand its engineering characteristics. The Yemen Republic needs to build a road in the desert area. It is inevitable that the wind and sand is inevitably encountered as a subgrade filler. The Hodeidah Mocha expressway, which was built in.2003, was built along the Red Sea coastline and across the broad sandy land, which means that this sand soil must be used as the road. Base filling. Hodeidah is located in the central Kaci Bay of the west coast of Yemen, extending eastward along the Red Sea coast to the foot of the mountain. The elevation rises from sea level to 250m. north latitude 15.8-13.38. It is an important agricultural production area in Yemen. It is an important agricultural production area in Yemen. The region is a tropical desert climate, and the southwest wind is prevalent. The annual average temperature is 19~4 Strong winds and sandstorms are often found at 0 degrees Celsius in.8~9 months. The average annual rainfall amount to 100mm. Hodeidah coastal plain is quaternary alluvial soil, including aeolian soil and alluvial soil. Aeolian sandy soil can be used as subgrade filler. This requires experimental research to solve such engineering problems. In this paper, the characteristics of sandy soil are studied. In this paper, the characteristics of aeolian sandy soil with different mud content are systematically tested and studied in combination with the Hodeidah Mocha highway. The main research contents and technical routes are as follows: (1) the physical characteristics of the aeolian sand with different mud content are studied by the laboratory test, and the different mud content of the sand is studied. The engineering geological characteristics of aeolian sand are evaluated. (2) the compaction test of aeolian sand with different mud content is carried out to study the compaction characteristics of the aeolian sand with different mud content and analyze its compaction mechanism. (3) through a series of strength and compression tests, the strength and deformation characteristics of the aeolian sand with different mud content are explored, and the aeolian sand with different mud content is studied. The influence factors and action mechanism of strength and deformation characteristics. (4) study and summarize the mechanical characteristics of aeolian sand with different sediment content, put forward the variation range of the mechanical indexes of different sediment laden wind sand, and put forward the test method of the maximum dry density of different slime. (5) according to the experimental results, the performance of the sand road with different mud content in aeolian sand is introduced. According to the results of laboratory tests, the physical characteristics, compactness, strength characteristics and deformation characteristics of different sand containing aeolian sand are thoroughly analyzed. The engineering characteristics of different sand content aeolian sand as road base fill are evaluated and the suitable sand content model is put forward. The specific research results are as follows: 1. the experimental study on the physical characteristics of the aeolian sand with different mud content can be found through the particle gradation test. The particle size of the mud aeolian sand in the Hodeidah Mocha expressway is mainly distributed in the range of 0.6~0.074mm, which belongs to medium fine sand; the non uniform coefficient Cu of each sand sample shows that the Hodeidah Mocha freeway contains mud. The unevenness coefficient of aeolian sand is small, indicating that the grain gradation is bad and the granularity is uniform. In order to study the engineering characteristics of the different mud content aeolian sand in Hodeidah Mocha expressway, the samples of the aeolian sand with different mud content (0.074mm) were prepared, and the mud content of the samples was 0.5%, 5%, 10%, 50%, 55% and 80%7, respectively. The non uniform coefficient was Cu inverse. The larger the distribution of different size group.Cu shows, the larger the distribution range of the soil particle size is, the better its gradation is, the greater the larger compactness is obtained when it is used as the subgrade filler. The curvature Cc shows the distribution range of the grain size accumulation curve and reflects the overall shape of the curve. Generally, it is considered that the soil sample satisfies both Cu5 and Cc=l~ at the same time. 3 and two conditions, the gradation is good. The result of gradation test shows that the unevenness coefficient Cu of different mud content aeolian sand is mostly less than 5, only when the mud content is 0.5%, the unevenness coefficient is Cu=5.13, and the curvature coefficient Cc of all samples is between 1~3, so it can be seen that most of the aeolian sand samples are not graded. The test results show that the specific gravity of the sample increases gradually with the increase of the mud content of the sample. The boundary water content of the soil is the liquid limit and the plastic limit of the soil. The liquid limit and the plastic limit of the soil are mainly used in the classification of soil, and in the design and construction of the highway. The liquid limit and plastic limit of the sample. For the sample with small mud content (4.5%), the liquid limit and plastic limit can be ignored because of the small size of the fine particle soil. The test results show that the liquid limit, plastic limit and plastic index of the sample increase with the increase of mud content in the sample, which is due to the increase of the viscosity. The thickness of the adsorbed water film between the soil particles is also changing when the mud content changes. The natural dry density of the slime in the Hodeidah plain is not the same. The dry density of the aeolian sand in the Hodeidah plain is generally in the dry state, but its natural water content is in the dry state. In the place where the natural water content is low, where the water content of the slime wind and sand can be less than 1% and the natural water content is high, the water content of the slime aeolian sand will not exceed the change of the 10%., and the water content in the sand containing the mud will also change continuously, the range of change is related to the mud content, such as water cut in spring. The amplitude of the change is 0.2%~4%. In the summer, the water content in the surface of the desert is small and the lower water content in the desert is gradually increasing. A small amount of water in the sand and sand is important to the growth of the plants in the area. The water content of the sand in the area with small rainfall will be lower. The Hodeidah Mocha high speed area will be lower. The mud aeolian sand in the highway has certain plastic properties because of a certain content of fine grained soil. According to the different mud content, the plastic degree of all kinds of aeolian sand is different. The sample with small mud content is low in plasticity and difficult to form, and the shear strength is low. The mud aeolian sand in Hodeidah Mocha expressway is basically related to the mud. Water, that is, the surface of the particle has a certain adsorption effect on water. With the increase of mud content, the hydrophilicity is becoming more and more intense. The permeability of the aeolian sand is better, the surface water will permeate into the depth of the stratum quickly, and the surface soil is often in the dry state. The mud content of the Hodeidah Mocha freeway is more mud than the mud. The amount of capillary water in aeolian sand is also different, because the capillary phenomenon in the aeolian sand is mainly related to the pore ratio, the mud content, the water film, the effective particle size and shape of the sand. The larger the mud content, the more fine particles, the larger the surface area, the relative surface of particles are relative. In order to study the compaction characteristics of mud aeolian sand in Hodeidah Mocha expressway, the compaction characteristics of.2. containing mud wind sand are stronger and stronger. In this paper, three different methods of heavy standard compaction test, dry vibration method and water vibration method are used in this paper. The results show that the maximum dry density appears in the dry state within the range of 0.56%~9.2%, and the dry density decreases with the increase of water content, and the compaction curve is irregular in the range of 9.2%~51.31%, and the dry density is smaller than the mud content, and the compaction curve when the mud content is more than 55.89%. Similar to fine soil, that is, when water content is less than the optimal water content, the dry density increases with the increase of water content. The maximum dry density of the sand containing aeolian sand decreases with the increase of mud content. The dry vibration test results show that the sample of aeolian sand containing less than 51.31% mud is similar to the wind product. Under certain time and amplitude, the dry density of sand is increased with time, the vibration time is about 4~8 minutes, the sample reaches the maximum dry density, and then the dry density decreases with the vibration time. When the mud content is more than 51.31%, the dry density of the slime is smaller with the vibration time, and the dry density is less than the 51.31% aeolian sand. The dry density decreases more obviously when the mud content is greater than 55.87%, which also indicates that the vibration method does not apply to the fine-grained soil. The maximum dry density of the aeolian sand is maximum when the mud content is 9.2%, and then the maximum dry density of the aeolian sand decreases with the increase of mud content. The results of water vibration test show that the dry density is reached within 4~8 minutes when the mud content is less than 51.31%. The larger the dry density is, the smaller the mud content is, the larger the dry density is, the dry density of the sample is less than 51.31% when the mud content is greater than 51.31%. When the mud content is less than 4.5%, the dry density can be obtained by the water vibration method, and the maximum dry density of the aeolian sand obtained by the water vibration method decreases with the increase of the mud content. The results of three tests showed that the maximum dry density of aeolian sand decreased with the increase of mud content when the mud content was less than the mud content. The maximum dry density of aeolian sand remained unchanged at 20%~30% range. The maximum dry density of aeolian sand continued to decrease with the increase of mud content when the mud content was more than 30%. When the dry vibration method is used, the maximum dry density is maximum at the mud content of 0.56% until the mud content increases to about 30%. The maximum dry density is not obvious with the mud content. When the mud content is more than 30%, the maximum dry density decreases with the increase of mud content. The maximum dry density and the mud content change law and the heavy standard of the slime in the water vibration test are obtained. The quasi compaction test is similar, but when the mud content is less than 30%, the maximum dry density ratio standard compaction test obtained by the water vibration method is slightly larger. When the mud content is more than 30%, the maximum dry density obtained by the water vibration method decreases more obviously with the increase of mud content. When the mud content is less than 30%, the maximum dry density obtained by the water vibration method is the most. The maximum dry density is the smallest. When the mud content is more than 30%, the maximum dry density of the heavy standard compaction test is the largest and the water vibration method is the least. The results of the direct shear test show that the friction angle of the inner friction angle of the Hodeidah to Mocha expressway is approximately 30 ~40 degrees, the internal friction angle and the degree of compaction are approximately linear, and the correlation coefficient is above 0.9, and the correlation coefficient is above and within. The friction angle increases with the increase of the degree of compaction. For the aeolian sand with mud content less than 9.2%, the internal friction angle is larger than that of the aeolian sand with mud content greater than 51.31%, and the internal friction angle is maximum when the mud content is 9.2%. When the mud content is more than 51.31%, the inner friction angle of the aeolian sand decreases with the increase of the mud content. The internal friction angle increases with the degree of compaction. When the mud content is less than 10%, the internal friction angle increases with the mud content and the mud content is greater than 10%. The internal friction angle decreases with the increase of mud content. The rebound test results show that the content of mud is the content of mud. The resilient modulus of aeolian sand is between 40MPa~65MPa. When the clay content is less than 9.2%, the modulus of resilience and the degree of compaction are approximately three times polynomial functions.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U414;U416.1

【共引文獻(xiàn)】

相關(guān)期刊論文 前1條

1 朱敏;陳文猛;;稻田沖壓密實(shí)節(jié)水灌溉技術(shù)推廣應(yīng)用探討[J];水利水電技術(shù);2014年07期

,

本文編號(hào):2127729

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2127729.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶44fea***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com