籃家?guī)r隧道洞口段圍巖參數(shù)反分析及施工數(shù)值模擬研究
[Abstract]:With the rapid development of national economy, China has built a large number of railways, highways, tunnels and other underground structure construction is facing enormous opportunities and challenges. The physical and mechanical parameters of geological bodies in underground engineering are of great significance to the design, construction and mechanical analysis of tunnel engineering, and are related to the safety and economy of underground engineering. However, due to the complexity of underground environment, these important physical and mechanical parameters are difficult to determine. In order to solve this problem, the displacement back analysis method based on MEABP neural network is studied in this paper, and the parameters of surrounding rock are used to simulate the construction of main tunnel. The characteristics of displacement and stress of surrounding rock support structure in tunnel construction are analyzed. The relationship between displacement release rate and time and position of tunnel wall is studied. The main contents and results of this paper are as follows: (1) regression analysis of monitoring data of parallel guide holes and prediction of the stability of tunnel monitoring data. On the basis of the spatial effect of tunnel excavation, according to the previous studies and referring to Li Gongcai of Shandong University, we calculated the release rate of class V surrounding rock after excavation with the upper and lower step method. Taking section PDK51 326 as an example, the true deformation of tunnel measuring points is calculated. (2) to solve the defects of BP neural network, the thought evolution algorithm is used to optimize BP network. According to the orthogonal test scheme, FLAC2D is used to construct the sample set of displacement and back analysis. The displacement back analysis system based on MEABP neural network is established by learning and training, and the parameters of surrounding rock of this section of tunnel are inputted and calculated. (3) the construction of main tunnel is directly calculated according to the parameters of surrounding rock inversed by parallel guide tunnel. Based on the analysis of displacement and stress of K51 310 section after excavation of upper and lower steps, the law of displacement and stress distribution of this section in tunnel construction is obtained. (4) according to the arch top and waist in the construction of main tunnel, The whole process curve of horizontal and vertical displacement of arch foot and its middle part is changed. The change trend and reason are analyzed, and the tunnel constructed by upper and lower step method is found. The variation of vertical displacement in every key part of tunnel wall is less affected by lower step excavation than horizontal displacement. (5) according to the records of K51 326 section in numerical simulation, the key parts of tunnel wall (arch roof, arch waist) are studied. The displacement and displacement release rate of arch foot and their middle part) change with time. The following conclusions are drawn: the displacement release rate near arch top is generally larger, and the displacement and displacement release decrease gradually along the wall from arch top to arch foot. When the measuring point position is fixed, the displacement and release rate of the measuring point approximately accord with S curve with time, and when the time is fixed, The displacement and displacement release rate of each key position is about the quadratic parabola relation between the measuring point position and the vertical angle, because of the particularity of the research problem, the displacement release rate function is simplified to be about the measuring point position and the vertical angle? And the binary function of time t, the expression is obtained by multivariate regression. By comparing the fitting error, it is found that the function has a little error in the region near t0, a small error in the region of t0 and a little distance from t0, and a good regression effect. (6) finally, according to the variation of displacement release rate, Combined with the measured dome settlement sequence of section K51 326, the S-shaped curve is used to modify the measured sequence, and the whole process curve expression of section deformation in tunnel construction is obtained.
【學位授予單位】:蘭州交通大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:U452.12;U455.4
【相似文獻】
相關期刊論文 前10條
1 郭建新;高永濤;;基于軟破圍巖錨噴支護位移理論的隧道支護時間分析[J];遼寧科技大學學報;2009年05期
2 王慶;郭德發(fā);郭艷;;瑪河電站水工隧洞圍巖—支護系統(tǒng)非線性分析[J];中國水運(下半月);2010年06期
3 黃祥志;佘成學;;基于可拓和模糊綜合評判理論的圍巖穩(wěn)定分類方法的比較[J];中國高新技術企業(yè);2012年Z1期
4 黃運飛,楊維懷;地下工程圍巖維護的新途徑—切縫弱化圍巖法研究[J];重慶大學學報(自然科學版);1988年03期
5 蘇有財;白志勇;胡香芳;;綜合評判法在圍巖等級劃分中的應用[J];路基工程;2008年05期
6 劉益鋒;任旭華;張繼勛;;基于灰關聯(lián)理論的圍巖參數(shù)敏感性分析[J];水電能源科學;2012年08期
7 湯伯森;彈塑圍巖最小支護抗力和最大允許變形的估算[J];巖土工程學報;1986年04期
8 鐘長平,許漢才;圍巖松馳變形影響因素初探[J];西安公路交通大學學報;1994年01期
9 鄭百功;佴磊;汪茜;陸威;;公路隧道圍巖穩(wěn)定性評價軟件開發(fā)與應用[J];吉林大學學報(地球科學版);2010年05期
10 王新波;潘曉明;;地下圓形隧道開挖卸荷圍巖彈塑性分析[J];河南科學;2010年09期
相關會議論文 前10條
1 齊俊修;劉力;劉克賢;楊國華;;十三陵抽水蓄能電站排風兼安全洞圍巖監(jiān)測及分析[A];巖土力學數(shù)值方法的工程應用——第二屆全國巖石力學數(shù)值計算與模型實驗學術研討會論文集[C];1990年
2 劉寧;朱維申;于廣明;;基于Mohr-Coulomb準則的初期支護與圍巖耦合作用分析[A];第六屆海峽兩岸隧道與地下工程學術及技術研討會論文集[C];2007年
3 倪國榮;張涵浩;李從眾;;洞潭水電站球岔設計及球穴圍巖穩(wěn)定分析[A];第一屆全國巖石力學數(shù)值計算及模型試驗討論會論文集[C];1986年
4 蘇有財;谷婷;朱勇;白志勇;;模糊理論在隧道施工階段圍巖等級劃分中的應用[A];第三屆全國巖土與工程學術大會論文集[C];2009年
5 揭雋夫;;應用圍巖分類法評價水工地下洞室圍巖穩(wěn)定的認識[A];地下工程經(jīng)驗交流會論文選集[C];1982年
6 仇文革;;隧道仰拱在支護與圍巖交互作用中機理的試驗研究[A];第二屆全國青年巖石力學與工程學術研討會論文集[C];1993年
7 齊俊修;王連捷;劉風成;王薇;董誠;;張河灣蓄能電站模型洞圍巖位移反分析及預測研究[A];第一屆中國水利水電巖土力學與工程學術討論會論文集(下冊)[C];2006年
8 徐平;夏銘佑;;大型地下洞室群圍巖穩(wěn)定三維彈塑性分析[A];第一屆海峽兩岸隧道與地下工程學術與技術研討會論文集(上冊)[C];1999年
9 龐永祥;;關于圓洞層狀圍巖的極向應力[A];地下工程經(jīng)驗交流會論文選集[C];1982年
10 孫文召;王丹;李昕;周晶;;水工高壓引水隧洞圍巖穩(wěn)定分析[A];水與水技術(第一輯)選編[C];2011年
相關重要報紙文章 前1條
1 黃寰;成都理工大學解開圍巖監(jiān)測難題[N];中國國土資源報;2003年
相關博士學位論文 前6條
1 劉永平;隧道脆性—準脆性圍巖連續(xù)損傷特征研究[D];吉林大學;2005年
2 張國華;基于圍巖累積損傷效應的大斷面隧道施工參數(shù)優(yōu)化研究[D];中國科學院研究生院(武漢巖土力學研究所);2010年
3 李景龍;大型地下洞室群工程穩(wěn)定性風險評估系統(tǒng)及其應用研究[D];山東大學;2008年
4 唐雄俊;隧道收斂約束法的理論研究與應用[D];華中科技大學;2009年
5 冷先倫;深埋長隧洞TBM掘進圍巖開挖擾動與損傷區(qū)研究[D];中國科學院研究生院(武漢巖土力學研究所);2009年
6 邵勇;采空區(qū)多災耦合作用下的隧道穩(wěn)定性分析[D];南京大學;2012年
相關碩士學位論文 前10條
1 劉厚銀;深埋隧洞圍巖及支護結構穩(wěn)定性研究[D];浙江工業(yè)大學;2015年
2 任明洋;籃家?guī)r隧道洞口段圍巖參數(shù)反分析及施工數(shù)值模擬研究[D];蘭州交通大學;2015年
3 林峰;長距離輸水隧洞TBM掘進過程圍巖穩(wěn)定性研究[D];浙江工業(yè)大學;2013年
4 劉士雨;地下工程圍巖穩(wěn)定性模糊綜合評價及其應用研究[D];華東交通大學;2009年
5 周學良;隧道圍巖變形監(jiān)測與圍巖參數(shù)的反演分析[D];合肥工業(yè)大學;2007年
6 林耿耿;引漢濟渭工程控制閘樞紐圍巖穩(wěn)定性研究[D];清華大學;2013年
7 苗萌萌;引觀入本工程北臺支線引水隧洞圍巖穩(wěn)定性分析[D];遼寧工程技術大學;2013年
8 梁禮繪;高埋深地下洞室圍巖穩(wěn)定性及支護結構研究[D];天津大學;2007年
9 徐浩;隧道開挖對地面建筑物影響的研究[D];重慶交通大學;2010年
10 王向剛;公路隧道位移反演及其穩(wěn)定性分析[D];山東大學;2005年
,本文編號:2122500
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2122500.html