基于小重疊碰撞的自適應(yīng)安全氣囊控制方法及實(shí)現(xiàn)
本文選題:自適應(yīng)安全氣囊 + 控制算法; 參考:《湖南大學(xué)》2015年碩士論文
【摘要】:安全氣囊是碰撞事故中挽救乘員生命的重要輔助裝置,當(dāng)汽車發(fā)生正面碰撞時(shí),與安全帶配合使用可有效降低乘員的傷亡率。為了提高安全氣囊在發(fā)生小重疊碰撞事故時(shí)對(duì)乘員的保護(hù)作用,使其更加適應(yīng)復(fù)雜的現(xiàn)實(shí)碰撞,本文提出了一種新型自適應(yīng)安全氣囊控制方法,并通過臺(tái)車試驗(yàn)驗(yàn)證了該控制系統(tǒng)的可靠性。首先,分析了小重疊碰撞事故類型特征和傳統(tǒng)安全氣囊控制算法的優(yōu)缺點(diǎn),提出基于自適應(yīng)模糊神經(jīng)推理系統(tǒng)(Adaptive Network-based Fuzzy Inference System,ANFIS)的二級(jí)模糊安全氣囊碰撞類型識(shí)別算法策略。根據(jù)經(jīng)過驗(yàn)證的碰撞仿真模型分析得到小重疊碰撞事故的三種特征參數(shù):速度變化量、汽車主要受力方向和加速度長(zhǎng)度比值。以此三種特征參數(shù)作為二級(jí)模糊氣囊碰撞類型檢測(cè)算法的模糊輸入,并通過使用ANFIS訓(xùn)練合適的模糊隸屬度函數(shù)和模糊規(guī)則來提高該算法的性能。針對(duì)開發(fā)的二級(jí)模糊算法,分別選擇了速度長(zhǎng)度比值和汽車主要受力方向單個(gè)特征參數(shù)作為算法的模糊輸入變量,與本文提出的算法做對(duì)比,分析了以不同特征參數(shù)為輸入變量的二級(jí)模糊算法在識(shí)別碰撞類型方面的優(yōu)缺點(diǎn),初步驗(yàn)證了本文提出的碰撞類型識(shí)別算法的實(shí)時(shí)性。基于本文提出的碰撞類型識(shí)別算法、圖像識(shí)別并融合體壓分布檢測(cè)乘員識(shí)別分類算法,設(shè)計(jì)了一款自適應(yīng)安全氣囊控制系統(tǒng),當(dāng)碰撞事故被識(shí)別為小重疊碰撞事故類型,并且超過安全氣囊觸發(fā)閾值后,在最佳時(shí)間同時(shí)展開前排乘員氣囊和側(cè)氣簾,合理匹配安全氣囊的形狀,從而達(dá)到對(duì)不同體征乘員不同碰撞事故類型都起到最佳保護(hù)的目的。最后,綜合考慮本文提出的自適應(yīng)安全氣囊算法特征與本實(shí)驗(yàn)室現(xiàn)有設(shè)備,進(jìn)行了臺(tái)車驗(yàn)證試驗(yàn)。在驗(yàn)證試驗(yàn)過程中,安全氣囊均能按照預(yù)期準(zhǔn)確識(shí)別碰撞類型和起爆條件,給乘員提供最佳保護(hù),驗(yàn)證了本文提出的自適應(yīng)安全氣囊算法的有效性和可靠性。
[Abstract]:Airbag is an important auxiliary device to save the occupant's life in the collision accident. When the car has the frontal impact, the use with the safety belt can effectively reduce the casualty rate of the occupant. In order to improve the protective effect of airbag on occupants in the event of small overlap collision, a new adaptive airbag control method is proposed in this paper. The reliability of the control system is verified by the bench car test. Firstly, the characteristics of small overlap collision accidents and the advantages and disadvantages of traditional airbag control algorithms are analyzed, and a two-level fuzzy airbag collision type identification algorithm based on Adaptive Network-based Fuzzy reference system (ANFIS) is proposed. According to the analysis of the verified collision simulation model, three characteristic parameters of the small overlap collision accident are obtained: the variation of velocity, the main force direction of the vehicle and the ratio of acceleration length. The three characteristic parameters are used as the fuzzy input of the two-stage fuzzy airbag collision detection algorithm, and the performance of the algorithm is improved by using ANFIS to train appropriate fuzzy membership function and fuzzy rules. According to the developed two-level fuzzy algorithm, a single characteristic parameter of the speed length ratio and the main bearing direction of the vehicle is selected as the fuzzy input variable of the algorithm, which is compared with the algorithm proposed in this paper. The advantages and disadvantages of the two-level fuzzy algorithm with different characteristic parameters as input variables for collision type recognition are analyzed and the real-time performance of the collision type recognition algorithm proposed in this paper is preliminarily verified. An adaptive airbag control system is designed based on the collision type recognition algorithm proposed in this paper, image recognition and body pressure distribution detection crew identification and classification algorithm. When the collision accident is identified as a small overlap collision accident type, a self-adaptive airbag control system is designed. After exceeding the threshold of airbag trigger, the front passenger airbag and side air curtain are expanded simultaneously at the best time to match the shape of airbag reasonably, so as to achieve the purpose of best protecting the occupants with different signs and different types of collision accidents. Finally, considering the characteristics of the adaptive airbag algorithm and the existing equipment in our laboratory, the vehicle verification test is carried out. During the verification test, the airbag can accurately identify the collision type and detonation condition according to the expectation, and provide the best protection for the occupants. The validity and reliability of the adaptive airbag algorithm proposed in this paper are verified.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U467.14;U491.61
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳望;干金鵬;史雪林;黃曉磊;;車輛緊急呼救系統(tǒng)中碰撞類型識(shí)別的新算法[J];汽車工程學(xué)報(bào);2015年03期
2 張良華;;汽車安全氣囊技術(shù)應(yīng)用分析[J];通訊世界;2015年08期
3 白中浩;劉玉云;王玉龍;;汽車安全氣囊控制器驗(yàn)證方法及實(shí)現(xiàn)[J];長(zhǎng)安大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年01期
4 崔淑娟;陳可明;;某車型小重疊碰撞仿真及車體結(jié)構(gòu)優(yōu)化[J];汽車安全與節(jié)能學(xué)報(bào);2014年02期
5 陳可明;胡麗娟;胡晏殊;;國(guó)內(nèi)某車型小偏置正面碰撞的全面評(píng)估[J];汽車安全與節(jié)能學(xué)報(bào);2013年01期
6 劉適;曹立波;喻偉雄;龔永堅(jiān);;針對(duì)某SUV車型安全氣囊的試驗(yàn)和仿真改進(jìn)[J];汽車工程學(xué)報(bào);2012年05期
7 王玉龍;白中浩;劉曜;周雪桂;;基于乘員類型特征識(shí)別的智能安全氣囊控制系統(tǒng)[J];汽車安全與節(jié)能學(xué)報(bào);2012年03期
8 葛如海;朱文婷;臧綾;;基于改進(jìn)移動(dòng)窗算法的碰撞識(shí)別控制策略的研究[J];汽車工程;2011年07期
9 馬志雄;朱西產(chǎn);;臺(tái)車試驗(yàn)中采用等效雙梯形減速度曲線的模擬研究[J];汽車工程;2008年05期
10 劉峰;富鋼;牟曉東;;計(jì)算機(jī)控制技術(shù)在汽車安全方面的應(yīng)用[J];遼寧經(jīng)濟(jì);2007年09期
相關(guān)會(huì)議論文 前1條
1 陳可明;李飛;楊偉;喬鑫;;國(guó)內(nèi)某車型在不同的小偏置碰撞模式下的分析[A];第九屆中國(guó)CAE工程分析技術(shù)年會(huì)專輯[C];2013年
相關(guān)博士學(xué)位論文 前3條
1 趙永華;面向智能安全氣囊的乘駕人檢測(cè)理論和方法研究[D];吉林大學(xué);2013年
2 黃晶;新型安全氣囊在前碰撞乘員損傷防護(hù)技術(shù)中的理論和方法研究[D];湖南大學(xué);2009年
3 南晉華;決策神經(jīng)網(wǎng)絡(luò)模型及應(yīng)用研究[D];華中科技大學(xué);2008年
相關(guān)碩士學(xué)位論文 前8條
1 吳亮亮;多級(jí)預(yù)點(diǎn)火安全氣囊的控制算法研究[D];重慶理工大學(xué);2014年
2 孫川川;基于自適應(yīng)神經(jīng)模糊推理系統(tǒng)的離心式壓縮機(jī)建模[D];寧夏大學(xué);2014年
3 劉玉云;智能安全氣囊控制算法關(guān)鍵技術(shù)研究[D];湖南大學(xué);2014年
4 苗珊珊;汽車乘員體征識(shí)別多傳感器融合算法[D];吉林大學(xué);2013年
5 文洪奎;汽車安全氣囊控制單元的設(shè)計(jì)與實(shí)現(xiàn)[D];上海交通大學(xué);2012年
6 秦孟蘇;基于模糊神經(jīng)網(wǎng)絡(luò)的汽車安全氣囊智能點(diǎn)火控制算法[D];湖南大學(xué);2008年
7 陳娜;基于人工神經(jīng)網(wǎng)絡(luò)的預(yù)報(bào)型汽車安全氣囊點(diǎn)火控制算法的研究[D];湖南大學(xué);2005年
8 葉智博;安全氣囊碰撞數(shù)據(jù)處理與點(diǎn)火算法的研究[D];武漢理工大學(xué);2005年
,本文編號(hào):2108191
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2108191.html