城市軌道交通長(zhǎng)大隧道區(qū)間火災(zāi)安全疏散問(wèn)題研究
本文選題:長(zhǎng)大隧道區(qū)間 + 火災(zāi)疏散。 參考:《北京交通大學(xué)》2017年碩士論文
【摘要】:安全是城市軌道交通系統(tǒng)發(fā)展中的恒久主題。關(guān)于地鐵火災(zāi)疏散問(wèn)題,雖然國(guó)內(nèi)外有很多相關(guān)的研究,但大多都是對(duì)于地鐵車(chē)站的疏散進(jìn)行仿真研究,而對(duì)于隧道內(nèi)乘客的疏散問(wèn)題相較于車(chē)站研究較少,對(duì)于運(yùn)營(yíng)中同時(shí)存在三列車(chē)的長(zhǎng)大隧道區(qū)間,由于工程上沒(méi)有先例,這方面的研究則更為罕見(jiàn)。隨著地鐵新線(xiàn)建設(shè)數(shù)量的增加,困難地段將逐漸增多,未來(lái)會(huì)出現(xiàn)更多的長(zhǎng)大隧道區(qū)間。因此本文研究如何解決地鐵長(zhǎng)大隧道區(qū)間發(fā)生火災(zāi)時(shí)的安全疏散問(wèn)題。本文依據(jù)北京地鐵17號(hào)線(xiàn)工程實(shí)際情況中存在的兩段長(zhǎng)大隧道區(qū)間,基于人員疏散的隨機(jī)性,將人員疏散時(shí)間、速度的極值分布模型與火災(zāi)數(shù)值模擬計(jì)算軟件FDS結(jié)合,建立長(zhǎng)大隧道區(qū)間火災(zāi)情況下行動(dòng)最慢人員逃生概率模型。本文的研究工作主要有以下幾個(gè)部分:(1)研究地鐵火災(zāi)發(fā)生的原因、特性以及疏散救援措施,總結(jié)國(guó)內(nèi)外相關(guān)標(biāo)準(zhǔn)和文獻(xiàn)中對(duì)隧道火災(zāi)研究的現(xiàn)有成果。(2)提出風(fēng)井分隔長(zhǎng)大隧道區(qū)間三列車(chē)的計(jì)算方法作為本文研究的基礎(chǔ),且分析當(dāng)隧道內(nèi)同時(shí)存在三列車(chē)時(shí),發(fā)生火災(zāi)情況下處于最不利位置的列車(chē),對(duì)處于最不利位置的列車(chē)不同車(chē)廂發(fā)生火災(zāi)情況下的通風(fēng)選擇方案與疏散組織方案進(jìn)行研究。(3)應(yīng)用FDS火災(zāi)數(shù)值模擬計(jì)算軟件,通過(guò)對(duì)火災(zāi)數(shù)值計(jì)算模型的建立,得到長(zhǎng)大隧道區(qū)間發(fā)生火災(zāi)情況下可用安全時(shí)間的計(jì)算方法。同時(shí)基于人員疏散行為的隨機(jī)性,將疏散過(guò)程分為三個(gè)階段,應(yīng)用GEV極值分布對(duì)第一、第二階段的人員疏散時(shí)間進(jìn)行擬合,應(yīng)用Gumble極值分布對(duì)第三階段的人員疏散速度進(jìn)行擬合,采用蒙特卡洛算法求解上述擬合結(jié)果得出人員總疏散時(shí)間樣本,最終結(jié)合本文所提出的安全疏散準(zhǔn)則,建立火災(zāi)中行動(dòng)最慢人員的逃生概率模型。(4)結(jié)合北京地鐵17號(hào)線(xiàn)實(shí)際情況,根據(jù)列車(chē)運(yùn)行曲線(xiàn)計(jì)算區(qū)間風(fēng)井位置,運(yùn)用FDS模擬計(jì)算兩種工況下的火災(zāi)實(shí)驗(yàn),分析實(shí)驗(yàn)數(shù)據(jù),得到對(duì)應(yīng)工況下人員可用安全時(shí)間。同時(shí)利用Matlab實(shí)現(xiàn)蒙特卡洛算法,得到最不利列車(chē)火災(zāi)情況下的人員必需疏散時(shí)間樣本。最后應(yīng)用數(shù)理統(tǒng)計(jì)方法對(duì)可用安全時(shí)間與必需疏散時(shí)間進(jìn)行分析,計(jì)算不同聯(lián)絡(luò)通道間距下,行動(dòng)最慢人員的逃生概率,分析得出最優(yōu)聯(lián)絡(luò)通道間距以及聯(lián)絡(luò)通道寬度。本文從工程實(shí)際出發(fā),研究同時(shí)存在三列車(chē)的長(zhǎng)大隧道區(qū)間,在國(guó)內(nèi)地鐵工程實(shí)例中無(wú)先例可循,這是本文的創(chuàng)新點(diǎn)之一。將目前廣泛應(yīng)用于金融、氣象、環(huán)境和信息等領(lǐng)域的極值分布理論運(yùn)用在火災(zāi)人員疏散時(shí)間及速度的建模中,并將此與火災(zāi)數(shù)值模擬結(jié)合建立了行動(dòng)最慢人員的逃生概率模型,這是本文的創(chuàng)新點(diǎn)之二。本文研究結(jié)論可為今后地鐵隧道安全設(shè)計(jì)提供依據(jù)。
[Abstract]:Safety is a constant theme in the development of urban rail transit system. Although there are a lot of related researches at home and abroad, most of them are simulation studies on subway station evacuation, but there is less research on the evacuation of passengers in the tunnel than at the station. Since there is no engineering precedent for the long tunnel section with three trains in operation, the research on this aspect is even rarer. As the number of subway new lines increases, the number of difficult areas will gradually increase, and there will be more long tunnels in the future. Therefore, this paper studies how to solve the problem of safe evacuation in the long tunnel fire. Based on the randomness of evacuation, this paper combines the extreme distribution model of evacuation time and velocity with the fire numerical simulation software FDS. The escape probability model of the slowest action personnel in the long tunnel interval fire was established. The main work of this paper is as follows: (1) study the causes, characteristics and evacuation measures of subway fire. This paper summarizes the relevant standards at home and abroad and the existing achievements in the study of tunnel fire. (2) the calculation method of the three trains in the long tunnel section separated by air wells is proposed as the basis of this study, and the analysis is made when there are three trains in the tunnel at the same time. The ventilation selection scheme and evacuation organization scheme of the train in the most disadvantageous position under different train compartments fire are studied. (3) the FDS fire numerical simulation software is used. By establishing the numerical model of fire, the method of calculating the available safe time in the case of fire in the long tunnel is obtained. At the same time, based on the randomness of evacuation behavior, the evacuation process is divided into three stages. The GEV extreme value distribution is used to fit the evacuation time of the first and second stages. The Gumble extreme distribution is used to fit the evacuation velocity of the third stage, and the Monte Carlo algorithm is used to solve the above fitting results. The total evacuation time sample is obtained. Finally, the safety evacuation criterion proposed in this paper is combined. The escape probability model of the slowest action personnel in the fire is established. (4) according to the actual situation of Beijing Metro Line 17, the location of the air shaft in the interval is calculated according to the train running curve, the fire experiment under two conditions is simulated and calculated by FDS, and the experimental data are analyzed. The available safety time of personnel under corresponding working conditions is obtained. At the same time, the Monte Carlo algorithm is implemented by Matlab, and the necessary evacuation time sample is obtained under the worst train fire condition. Finally, the available safe time and necessary evacuation time are analyzed by mathematical statistics method, and the escape probability of the slowest action personnel under different contact channel spacing is calculated, and the optimal contact channel spacing and the contact channel width are obtained. Based on the engineering practice, this paper studies the existence of a long tunnel section with three trains, and there is no precedent in the domestic subway project. This is one of the innovative points of this paper. The extreme value distribution theory, which is widely used in the fields of finance, meteorology, environment and information, is applied to the modeling of evacuation time and speed of fire personnel, and the escape probability model of the slowest action personnel is established by combining this with numerical simulation of fire. This is the second innovation of this paper. The conclusion of this paper can provide the basis for the safety design of subway tunnel in the future.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:U458.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 褚鵬宇;劉瀾;尹俊淞;;基于動(dòng)態(tài)變權(quán)模糊Petri網(wǎng)的地鐵火災(zāi)風(fēng)險(xiǎn)評(píng)估[J];安全與環(huán)境學(xué)報(bào);2016年06期
2 樊利利;;變形廣義極值分布的參數(shù)估計(jì)及實(shí)例分析[J];首都師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年06期
3 姜傳治;;北京市域快軌新機(jī)場(chǎng)線(xiàn)長(zhǎng)大區(qū)間防災(zāi)救援方案[J];都市快軌交通;2016年04期
4 鐘帥;苗作華;余璨;冉康;劉聰;;基于FDS的地鐵車(chē)站火災(zāi)數(shù)值模擬分析[J];軟件導(dǎo)刊;2016年07期
5 周文科;趙歡;周慧娟;;基于AnyLogic仿真的高校宿舍火災(zāi)疏散研究[J];消防科學(xué)與技術(shù);2014年12期
6 丁杰;展望;蔣軍成;;地鐵人員安全疏散模擬分析[J];科技展望;2014年19期
7 袁勇;邱俊男;;地鐵火災(zāi)的原因與統(tǒng)計(jì)分析[J];城市軌道交通研究;2014年07期
8 周文科;;模糊層次分析法模型在地鐵區(qū)間隧道火災(zāi)風(fēng)險(xiǎn)評(píng)估中的應(yīng)用[J];武警學(xué)院學(xué)報(bào);2014年04期
9 鐘爾杰;;蒙特卡羅方法實(shí)驗(yàn)設(shè)計(jì)[J];實(shí)驗(yàn)科學(xué)與技術(shù);2013年06期
10 陳霞;戴廣龍;劉盼;;高;馂(zāi)時(shí)人員疏散行為調(diào)查研究[J];安全與環(huán)境學(xué)報(bào);2013年04期
相關(guān)博士學(xué)位論文 前3條
1 孟娜;地鐵車(chē)站關(guān)鍵結(jié)合部位火災(zāi)煙氣流動(dòng)特性與控制模式優(yōu)化研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2014年
2 李修柏;特長(zhǎng)高速鐵路隧道火災(zāi)人員疏散研究[D];中南大學(xué);2013年
3 陳曼英;基于模糊理論的地鐵火災(zāi)風(fēng)險(xiǎn)評(píng)估及控制研究[D];華僑大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 梁雪;某地鐵工程火災(zāi)安全性研究[D];北方工業(yè)大學(xué);2016年
2 陳霖;地鐵隧道著火列車(chē)?yán)^續(xù)運(yùn)行條件下的煙氣特性研究[D];西南交通大學(xué);2016年
3 朱安駒;基于社會(huì)力模型下地鐵站火災(zāi)疏散研究[D];西安建筑科技大學(xué);2016年
4 盧斯佳;廣州某地鐵站火災(zāi)人員安全疏散研究[D];華南理工大學(xué);2016年
5 安健;地鐵長(zhǎng)區(qū)間隧道火災(zāi)通風(fēng)模式與排煙研究[D];西安建筑科技大學(xué);2014年
6 朱海燕;廣義極值分布參數(shù)估計(jì)方法的比較分析[D];南京師范大學(xué);2014年
7 黎旭;城際軌道交通隧道疏散與防災(zāi)研究[D];西南交通大學(xué);2013年
8 何劍鋒;地鐵隧道通風(fēng)系統(tǒng)中間風(fēng)井的優(yōu)化研究[D];西南交通大學(xué);2013年
9 吳建波;地鐵列車(chē)火災(zāi)煙氣運(yùn)動(dòng)研究[D];西南交通大學(xué);2011年
10 張?jiān)从?西安地鐵火災(zāi)風(fēng)險(xiǎn)性評(píng)估方法研究[D];西安建筑科技大學(xué);2011年
,本文編號(hào):2078979
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2078979.html