沿黃公路府谷段高陡巖質(zhì)邊坡穩(wěn)定性分析
本文選題:邊坡穩(wěn)定性 + 高陡巖質(zhì)邊坡。 參考:《西安科技大學(xué)》2017年碩士論文
【摘要】:近年來,隨著府谷縣經(jīng)濟(jì)的快速發(fā)展,高等級公路建設(shè)的步伐明顯加快,而由此帶來的邊坡災(zāi)害也層出不窮。其中沿黃公路府谷段公路建設(shè)開挖形成了陡的坡角,破壞了坡腳原有的應(yīng)力分布。坡體由于受到節(jié)理面、差異性風(fēng)化、降雨等因素的綜合作用,邊坡的中上部巖體出現(xiàn)了失穩(wěn)掉塊的現(xiàn)象。而隨著風(fēng)化程度的進(jìn)一步加強(qiáng),以及連續(xù)暴雨的不斷侵蝕,最終可能會(huì)導(dǎo)致坡體的整體垮塌。迫于這種趨勢,迫切需要對該區(qū)巖質(zhì)邊坡的穩(wěn)定性開展分析研究,以便為巖質(zhì)邊坡的支護(hù)設(shè)計(jì)提供依據(jù);谝陨险J(rèn)識,本文選取沿黃公路K1+255~K1+677段邊坡作為工程實(shí)例段,對其穩(wěn)定性及其支護(hù)設(shè)計(jì)方案進(jìn)行分析研究。(1)分別從巖體內(nèi)部因素(地層巖性、邊坡外形)和外部因素(降雨、風(fēng)化)兩方面總結(jié)了影響巖質(zhì)邊坡穩(wěn)定性的因素,分析了各因素對邊坡穩(wěn)定性的影響機(jī)理。文章采用赤平投影法定性分析邊坡穩(wěn)定性,離散元UDEC軟件定量模擬邊坡的變形破壞機(jī)理。(2)從定性分析得出,節(jié)理面破壞了巖體的整體穩(wěn)定性,由于兩組節(jié)理面的共同作用,坡面形成了楔形體;定量模擬在天然工況下5-1'、5-2'剖面的最大位移量為7.33cm、20.72cm,穩(wěn)定性系數(shù)為1.89、1.85。飽水工況下5-1'、5-2'剖面的最大位移量為7.68cm、30.94cm,穩(wěn)定性系數(shù)為1.40、1.38。風(fēng)化+飽水工況下5-1'、5-2剖面的最大位移量為3.48m、5.72m,穩(wěn)定性系數(shù)為0.89、0.88;滲流分析邊坡后緣裂隙充水帶高度在5m、10m、20m的情況下,邊坡的穩(wěn)定性系數(shù)分別為1.36、1.32、1.27,坡體內(nèi)最大孔隙水壓力從最開始的0.24Kpa增長到0.60Kpa。(3)從定性分析知道在暴雨或是持續(xù)降雨的情況下,雨水沿著節(jié)理面入滲,坡面會(huì)出現(xiàn)失穩(wěn)掉塊的現(xiàn)象;定量模擬分析得出在天然工況下坡體的穩(wěn)定性較好。在暴雨工況下,5-2'剖面附近巖體會(huì)出現(xiàn)失穩(wěn)掉快的現(xiàn)象,坡體的穩(wěn)定性一般,這與定性分析的結(jié)果基本吻合。在風(fēng)化+飽水工況下坡體整體會(huì)出現(xiàn)失穩(wěn)垮塌的現(xiàn)象。滲流分析得出孔隙水壓力隨著充水帶高度的升高而增大,坡體的穩(wěn)定性隨著充水帶高度的升高而逐漸降低。(4)基于以上分析對坡體進(jìn)行支護(hù)設(shè)計(jì),支護(hù)方案一:清理滾石、危巖+刷方卸載+掛網(wǎng)噴混+被動(dòng)防護(hù)網(wǎng)+主動(dòng)防護(hù)網(wǎng)+排水工程;支護(hù)方案二:清理滾石、危巖+掛網(wǎng)噴混+主動(dòng)防護(hù)網(wǎng)+被動(dòng)防護(hù)網(wǎng)+排水工程。支護(hù)設(shè)計(jì)方案也可為該地區(qū)同類巖質(zhì)高邊坡的防護(hù)提供一定的借鑒作用。
[Abstract]:In recent years, with the rapid economic development of Fugu County, the pace of high-grade highway construction is obviously accelerated, and the resulting slope disasters also emerge in endlessly. The excavation along the Fugu section of the Yellow River highway forms a steep slope angle, which destroys the original stress distribution at the foot of the slope. Due to the combined action of joint plane, differential weathering and rainfall, the rock mass in the middle and upper part of the slope is unstable. With the further strengthening of weathering degree and the continuous erosion of continuous rainstorm, the slope body may collapse in the end. Because of this trend, it is urgent to analyze and study the stability of rock slope in this area in order to provide the basis for supporting design of rock slope. Based on the above understanding, this paper selects the slope of K1255K1677 along the Yellow River Highway as an engineering example section, and analyzes its stability and supporting design scheme from the internal factors of rock mass (stratigraphic lithology). The influence factors of rock slope stability are summarized from two aspects: slope shape) and external factors (rainfall, weathering), and the influence mechanism of each factor on slope stability is analyzed. In this paper, the stability of slope is qualitatively analyzed by the method of plane projection, and the deformation and failure mechanism of slope is quantitatively simulated by discrete element UDEC software. From the qualitative analysis, it is concluded that the joint plane destroys the whole stability of rock mass, because of the joint action of two groups of joints. A wedge is formed on the slope, and the maximum displacement of 5-1GV 5-2'section under natural conditions is 7.33 cm-1 (20.72 cm) and the stability coefficient is 1.89 cm (1.85 cm). The maximum displacement and stability coefficient of the 5-1D 5-2'profile are 7.68 cm / m ~ 30.94 cm and 1.40 cm ~ (-1) ~ (38) cm respectively under saturated water condition. Under the condition of weathering and saturated water, the maximum displacement and stability coefficient of the 5-1D 5-2 section are 3.48mand 5.72mrespectively, and the coefficient of stability is 0.89m0.88.The seepage analysis shows that the height of the water-filling zone in the back edge of the slope is 5m10m10m ~ 20m, and the maximum displacement of the profile is 3.48mand 5.72m. The slope stability coefficient is 1.36 / 1.32 / 1.27 and the maximum pore water pressure in the slope increases from 0.24Kpa at the beginning to 0.60Kpa.Ni3) from the qualitative analysis, it is found that under the condition of heavy rain or continuous rainfall, the Rain Water infiltration along the joint surface will lead to the instability of the slope. Quantitative simulation analysis shows that the stability of slope body is better under natural working conditions. Under heavy rain conditions, the rock mass near the 5-2 'profile will lose stability quickly, and the stability of slope body is general, which is in good agreement with the results of qualitative analysis. Under the condition of weathering and saturated water, the whole slope body will be unstable and collapse. Seepage analysis shows that the pore water pressure increases with the height of the water-filled belt, and the stability of the slope decreases gradually with the increase of the water-filled belt height.) based on the above analysis, the support design of the slope body is carried out. The drainage project of active protective net is carried out by unloading the hanging net and spraying the passive protective net; the second supporting scheme is to clean up the rolling stone, the dangerous rock hanging the net, the shotcrete mixing the active protective net and the passive protective net drainage project. The supporting design scheme can also provide some reference for the protection of the similar rock slope in this area.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U416.14
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊毅;;赤平投影法在某邊坡穩(wěn)定性分析中的應(yīng)用[J];四川建材;2016年06期
2 劉裕鋒;高向陽;劉小麗;;陜西省府谷縣近56年降水量時(shí)間變化特征[J];農(nóng)業(yè)災(zāi)害研究;2015年10期
3 袁志輝;倪萬魁;陳志新;;拉裂式崩塌的運(yùn)動(dòng)特征分析——以陜西延長縣為例[J];災(zāi)害學(xué);2014年04期
4 戴青松;巨能攀;鄭達(dá);霍宇翔;;基于離散元法的某滑坡變形演化機(jī)理淺析[J];人民長江;2014年15期
5 陳奇珠;董翌為;;赤平投影法分析巖質(zhì)邊坡穩(wěn)定性的圖解模板[J];西北水電;2013年04期
6 賀續(xù)文;劉忠;廖彪;王翠翠;;基于離散元法的節(jié)理巖體邊坡穩(wěn)定性分析[J];巖土力學(xué);2011年07期
7 劉友勤;梁祥;;基于地質(zhì)災(zāi)害的現(xiàn)狀與防治措施的探討[J];中國新技術(shù)新產(chǎn)品;2011年02期
8 蘭書民;;淺談高速公路建設(shè)對環(huán)境的影響及保護(hù)措施[J];經(jīng)營管理者;2010年16期
9 劉華強(qiáng);殷宗澤;;膨脹土邊坡穩(wěn)定分析方法研究[J];巖土力學(xué);2010年05期
10 楊明;張可能;劉宇飛;楊慶光;;基于MATLAB的均質(zhì)土坡穩(wěn)定可靠度的蒙特卡羅模擬[J];地質(zhì)與勘探;2009年01期
相關(guān)博士學(xué)位論文 前1條
1 包惠明;基于RS理論的巖質(zhì)路塹邊坡穩(wěn)定性研究[D];長安大學(xué);2003年
相關(guān)碩士學(xué)位論文 前10條
1 武陽;巖質(zhì)邊坡穩(wěn)定性分析方法及工程應(yīng)用[D];安徽理工大學(xué);2015年
2 孟京京;巖質(zhì)邊坡穩(wěn)定性的離散元分析及其應(yīng)用[D];中南大學(xué);2014年
3 韓建國;地災(zāi)治理中巖質(zhì)高邊坡的穩(wěn)定性分析與評價(jià)[D];山東大學(xué);2012年
4 陳勇;臨床IMRT放射治療的劑量驗(yàn)證及未均整射束的劑量學(xué)特性研究[D];蘇州大學(xué);2012年
5 余業(yè);反傾巖質(zhì)滑坡成因機(jī)制及動(dòng)力響應(yīng)研究[D];成都理工大學(xué);2011年
6 向娟;通平高速公路路塹邊坡穩(wěn)定性分析與防治研究[D];中南大學(xué);2011年
7 馮昱熹;山區(qū)高速公路路塹邊坡穩(wěn)定性分析及防護(hù)技術(shù)研究[D];中南大學(xué);2011年
8 王洋;基于數(shù)字圖像技術(shù)巖體隧道開挖三維模型數(shù)值實(shí)現(xiàn)與分析[D];東北大學(xué);2010年
9 王者濤;青川縣城桅桿梁不穩(wěn)定斜坡穩(wěn)定性評價(jià)及其防治措施研究[D];成都理工大學(xué);2010年
10 鐘林;赤平投影在工程地質(zhì)勘探中的應(yīng)用研究[D];中南大學(xué);2009年
,本文編號:2027975
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2027975.html