天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 路橋論文 >

密集橫隔板UHPC箱梁橋面板雙向受力性能試驗(yàn)研究

發(fā)布時(shí)間:2018-06-11 20:55

  本文選題:橋梁工程 + 雙向受力性能; 參考:《湖南大學(xué)》2015年碩士論文


【摘要】:超大跨徑UHPC(Ultra High Performance Concrete,簡(jiǎn)稱UHPC)連續(xù)箱梁橋是一種將超高性能混凝土材料、具有密集橫隔板的薄壁箱梁和體外預(yù)應(yīng)力有機(jī)結(jié)合起來的縱向單向預(yù)應(yīng)力新型連續(xù)梁橋。該體系梁橋所具有的優(yōu)異結(jié)構(gòu)性能,有望解決傳統(tǒng)預(yù)應(yīng)力混凝土箱梁橋所面臨的梁體開裂和主跨下?lián)蟽纱蟛『?并實(shí)現(xiàn)預(yù)應(yīng)力混凝土連續(xù)梁橋的經(jīng)濟(jì)跨徑突破400m。密集橫隔板的設(shè)置有利于解決UHPC箱梁薄壁化所面臨的整體穩(wěn)定性、截面畸變及腹板抗剪等問題,同時(shí)也改變了箱梁橋橋面板在汽車局部輪載作用下的受力模式:傳統(tǒng)混凝土箱梁橋多在墩頂及跨中處設(shè)置橫隔板,橋面輪載單向地由頂板傳遞至腹板;而在UHPC箱梁橋中,橫隔板沿縱橋向密集設(shè)置,橫隔板與箱梁腹板共同支承頂板承受橋面輪載,橋面輪載沿縱橫雙向傳遞,較傳統(tǒng)構(gòu)造混凝土箱梁橋面板,UHPC箱梁橋面板的受力性能與傳力機(jī)理均發(fā)生改變。本文研究即從具有密集橫隔板構(gòu)造UHPC箱梁橋面板的受力性能和傳力機(jī)理兩方面展開:(1)通過靜力模型試驗(yàn)和有限元數(shù)值模擬,定性地分析了UHPC箱梁橋面板受力性能和內(nèi)力分布特征,獲取UHPC箱梁橋面板受力性能改善的依據(jù),同時(shí)對(duì)雙向受力模式下橋面板跨中截面荷載有效分布寬度的變化規(guī)律進(jìn)行研究,形成進(jìn)一步理論分析的參考。結(jié)果表明:密集橫隔板UHPC薄壁箱梁通過高性能材料的應(yīng)用和對(duì)橋面支承體系的改變,擴(kuò)展了橋面板的線彈性工作區(qū)間,5.5倍設(shè)計(jì)車輪局部荷載作用下,試驗(yàn)工況橋面板仍處于線彈性受力階段;與傳統(tǒng)無密隔板構(gòu)造箱梁橋面板對(duì)比,密集橫隔板構(gòu)造箱梁橋面板屬雙向傳力構(gòu)件,單向承載比重降低,且主受力方向由傳統(tǒng)箱梁橋面板的橫橋向變?yōu)榭v橋向;橫隔板沿縱橋向密集設(shè)置,對(duì)橫橋向受力板帶荷載有效分布寬度具有一定約束作用。(2)以試驗(yàn)及有限元分析為基礎(chǔ),基于等代簡(jiǎn)支跨原理,對(duì)雙向傳力模式下模型橋面板的荷載縱、橫向分配問題進(jìn)行了理論分析,對(duì)控制截面內(nèi)力進(jìn)行了初步計(jì)算。結(jié)果表明:等代簡(jiǎn)支跨原理對(duì)荷載分配進(jìn)行計(jì)算的思路較合理;線彈性受力階段,最不利正彎矩工況下橋面板輪載縱、橫向分配比,疏隔板側(cè)約為1:0.64,密隔板側(cè)約為1:0.53,輪載雙向分配趨于均勻,橋面板受力效率提高;橋面板負(fù)彎矩控制值為橫隔板支承處頂部縱橋向彎矩,采用現(xiàn)行規(guī)范內(nèi)力算法對(duì)橋面板正、負(fù)彎矩的計(jì)算結(jié)果與實(shí)測(cè)內(nèi)力相接近,但限于其理論來源,計(jì)算結(jié)果尚存在偏差。
[Abstract]:UHPC-Ultra High performance Concrete (UHPC) continuous box girder bridge is a new type of longitudinal unidirectional prestressed continuous girder bridge, which combines ultra-high performance concrete material, thin-walled box girder with dense transverse diaphragm and external prestressing force. The excellent structural performance of the system is expected to solve the two major diseases of the traditional prestressed concrete box girder bridge, such as cracking of the beam body and deflection of the main span, and the economic span of the prestressed concrete continuous beam bridge exceeds 400m. The installation of dense transverse diaphragm is helpful to solve the problems of overall stability, cross-section distortion and web shear resistance of UHPC box girder, which are faced with thin-walled UHPC box girder. At the same time, it also changed the stress mode of deck slab of box girder bridge under the action of vehicle partial wheel load: the traditional concrete box girder bridge installed transverse partition at the top of pier and the middle of span, and the wheel load of deck was transferred from top plate to web plate in one direction, while in UHPC box girder bridge, The transverse partition plate is arranged intensively along the longitudinal bridge, the roof plate supported by the transverse partition board and the box girder web plate is subjected to the bridge deck wheel load, and the bridge deck wheel load is transmitted in both longitudinal and horizontal directions. Compared with the traditional concrete box girder bridge, the mechanical behavior and force transfer mechanism of UHPC box girder bridge face slab have been changed. In this paper, through static model test and finite element numerical simulation, the stress behavior and force transfer mechanism of UHPC box girder bridge with dense transverse diaphragm are studied. This paper qualitatively analyzes the behavior and internal force distribution characteristics of UHPC box girder bridge face slab, obtains the basis for improving the bearing performance of UHPC box girder bridge face slab, and studies the variation law of effective load distribution width of bridge deck slab in the middle section of bridge deck under bidirectional loading mode. To form a reference for further theoretical analysis. The results show that through the application of high performance material and the change of bridge deck supporting system, UHPC thin-walled box girder with dense transverse diaphragm extends the linear elastic working interval of bridge deck under local load of 5.5 times of designed wheel. The bridge deck is still in the stage of linear elastic force under test conditions, and compared with the traditional non-dense diaphragm construction box girder bridge panel, the dense transverse partition plate construction box girder bridge face belongs to the two-way force transfer component, the unidirectional bearing specific gravity is reduced, The direction of the main force is changed from the transverse direction of the traditional box girder bridge slab to the longitudinal bridge direction, and the transverse partition plate is arranged intensively along the longitudinal bridge direction, which has a certain constraint on the effective distribution width of the load of the transverse bridge bearing slabs. 2) based on the test and finite element analysis, Based on the principle of equal-generation simply supported span, the longitudinal and transverse load distribution of the model bridge deck under the bidirectional force transfer mode is theoretically analyzed, and the internal forces of the control section are preliminarily calculated. The results show that it is reasonable to calculate the load distribution under the principle of equal-generation simply supported span, and the longitudinal and transverse load distribution ratio of bridge deck under the most unfavorable positive moment condition in linear elastic loading stage, The negative moment control value of bridge deck plate is about 1: 0.64 and 1: 0.53 respectively. The load distribution tends to be uniform, and the control value of negative bending moment of bridge deck plate is the longitudinal moment of the top of the bridge slab at the support of the transverse partition board. The current standard internal force algorithm is used to direct the bridge deck plate. The calculation result of negative moment is close to the measured internal force, but limited to its theoretical source, the calculation result still exists deviation.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U446.1

【參考文獻(xiàn)】

相關(guān)期刊論文 前8條

1 丁楠;邵旭東;;輕型組合橋面板的疲勞性能研究[J];土木工程學(xué)報(bào);2015年01期

2 劉勇;邵旭東;詹豪;;主跨400m的UHPC連續(xù)梁橋優(yōu)化設(shè)計(jì)[J];公路交通科技;2014年08期

3 邵旭東;詹豪;雷薇;張哲;;超大跨徑單向預(yù)應(yīng)力UHPC連續(xù)箱梁橋概念設(shè)計(jì)與初步實(shí)驗(yàn)[J];土木工程學(xué)報(bào);2013年08期

4 邵旭東;曹君輝;易篤韜;陳斌;黃政宇;;正交異性鋼板-薄層RPC組合橋面基本性能研究[J];中國公路學(xué)報(bào);2012年02期

5 王飛;方志;;大跨活性粉末混凝土連續(xù)剛構(gòu)橋的性能研究[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年04期

6 季文玉;周超民;;預(yù)應(yīng)力RPC箱梁剪力滯效應(yīng)分析[J];中國鐵道科學(xué);2007年01期

7 方志,張志田;鋼筋混凝土變截面箱梁橫向受力有效分布寬度分析[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年06期

8 方志,張志田;鋼筋混凝土箱梁橫向受力有效分布寬度的試驗(yàn)研究[J];中國公路學(xué)報(bào);2001年01期

相關(guān)碩士學(xué)位論文 前9條

1 趙娟;300-500米跨徑橋梁的適宜結(jié)構(gòu)體系[D];湖南大學(xué);2014年

2 張策;超大跨徑UHPC連續(xù)箱梁橋接縫設(shè)計(jì)及模型試驗(yàn)[D];湖南大學(xué);2014年

3 劉勇;超大跨徑UHPC連續(xù)梁橋優(yōu)化設(shè)計(jì)研究[D];湖南大學(xué);2014年

4 雷薇;超大跨徑UHPC連續(xù)箱梁橋抗剪性能研究[D];湖南大學(xué);2013年

5 項(xiàng)周;纖維活性粉末混凝土抗彎拉強(qiáng)度影響因素研究[D];湖南大學(xué);2011年

6 吳志發(fā);預(yù)應(yīng)力活性粉末混凝土箱梁非線性全過程分析研究[D];北京交通大學(xué);2007年

7 陳彬;預(yù)應(yīng)力RPC梁抗剪性能研究[D];湖南大學(xué);2007年

8 高晶;縱向加勁肋橋面板受力性能的模型試驗(yàn)研究[D];東南大學(xué);2006年

9 張志田;鋼筋混凝土箱梁橫向受力性能的理論及試驗(yàn)研究[D];湖南大學(xué);2001年

,

本文編號(hào):2006665

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2006665.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶f11a8***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com