考慮剪切變形效應(yīng)的單跨斜梁橋受力特性研究
本文選題:斜梁橋 + Timoshenko深梁理論; 參考:《長(zhǎng)沙理工大學(xué)》2015年碩士論文
【摘要】:高等級(jí)公路及鐵路線上的中、小型橋梁,往往采用服從線路走向的設(shè)計(jì)方式,將中軸線與支承線、水流方向等斜交的橋梁設(shè)計(jì)成斜梁橋。隨著我國(guó)交通運(yùn)輸事業(yè)的迅猛發(fā)展,中、小跨徑的斜梁橋結(jié)構(gòu)應(yīng)用越來(lái)越廣泛,國(guó)內(nèi)外學(xué)者也進(jìn)行了廣泛而深入的研究,其內(nèi)力、變形等靜力特性方面的研究較為系統(tǒng)。但以往研究的理論基礎(chǔ)大多為初等梁理論,認(rèn)為剪切效應(yīng)對(duì)內(nèi)力、變形的影響較小,因而被忽略。剪切效應(yīng)對(duì)斜橋內(nèi)力、變形的影響規(guī)律如何、如何進(jìn)行力學(xué)分析,目前的研究工作還不是非常深入,值得進(jìn)一步探討。故本文基于Timoshenko深梁理論的力法及圖乘法,做了以下工作:(1)建立了考慮剪切變形影響的單跨靜定斜梁計(jì)算方法,推導(dǎo)了靜定斜深梁橋在常見(jiàn)荷載作用下的變形計(jì)算公式,分析了一座單箱單室無(wú)懸臂斜梁橋隨斜交角、平面形狀、彎剪剛度比變化時(shí)剪切效應(yīng)對(duì)其內(nèi)力的影響規(guī)律。(2)建立了考慮剪切變形影響的單跨超靜定斜梁計(jì)算方法,推導(dǎo)了超靜定斜深梁橋在常見(jiàn)荷載作用下的反力、內(nèi)力及變形計(jì)算公式,并對(duì)A型斜箱梁橋的跨徑、斜交角、平面形狀等參數(shù)進(jìn)行變化,分析剪切效應(yīng)對(duì)其反力、內(nèi)力及變形計(jì)算的影響;得到了跨徑越小、斜交角越大,剪切效應(yīng)對(duì)斜梁撓度的影響越大,但對(duì)撓角和扭角的影響較小等結(jié)論。(3)針對(duì)工程上常見(jiàn)的四種特殊斜梁(簡(jiǎn)支正梁、平行四邊形斜梁、直角梯形斜梁、等腰梯形斜梁),分析了剪切效應(yīng)對(duì)其內(nèi)力、變形計(jì)算的影響;提出中、小跨徑斜梁橋撓度計(jì)算時(shí)應(yīng)采用考慮剪切變形影響的Timoshenko深梁理論,否則低估撓度計(jì)算結(jié)果;(4)建立了考慮剪切變形與支承剛度共同影響下的斜梁橋內(nèi)力計(jì)算方法,分析了剪切變形及支承剛度對(duì)斜梁橋內(nèi)力計(jì)算的影響;并用有限元軟件對(duì)所推導(dǎo)的計(jì)算公式進(jìn)行了驗(yàn)證,得出了剪切變形與支承剛度對(duì)單跨斜梁橋內(nèi)力計(jì)算的影響較小;所推導(dǎo)的斜深梁橋內(nèi)力與變形計(jì)算公式方便設(shè)計(jì)人員的計(jì)算,有促于推動(dòng)斜橋計(jì)算理論的深化和拓展,豐富斜梁的計(jì)算方法。
[Abstract]:Medium and small bridges on high grade highways and railway lines are often designed by the way of design from line to line. The bridge with skew intersection of central axis and supporting line and direction of water flow is designed into oblique beam bridge. With the rapid development of transportation in China, the small span oblique beam bridge structure is more and more widely used. Scholars at home and abroad have also carried out extensive and in-depth research, its internal force, deformation and other static characteristics of the research is more systematic. However, most of the previous studies are based on the elementary beam theory, and it is considered that the shear effect has little effect on the internal force and deformation, so it is neglected. The influence of shear effect on the internal force and deformation of the inclined bridge and how to carry out mechanical analysis are not very deep at present, so it is worth discussing further. Therefore, based on the force method and graph multiplication of Timoshenko deep beam theory, the following work is done: 1) the calculation method of single-span statically indeterminate oblique beam considering the effect of shear deformation is established, and the formula for calculating the deformation of statically inclined-deep beam bridge under common loads is derived. In this paper, the influence of shear effect on the internal force of a single-box single-chamber non-cantilever beam bridge with the angle of skew, plane shape and the ratio of bending to shear stiffness is analyzed. The calculation method of single-span statically indeterminate oblique beam considering the effect of shear deformation is established. The formulas for calculating the reaction force, internal force and deformation of a statically indeterminate skew deep beam bridge under common loads are derived. The parameters such as span, diagonal angle and plane shape of A type inclined box girder bridge are changed, and the reaction force of shear effect on the bridge is analyzed. The results show that the smaller span, the greater the angle of oblique intersection, the greater the influence of shear effect on deflection of skew beam, but the less effect on deflection angle and torsion angle of skew beam. In this paper, the influence of shear effect on the calculation of internal force and deformation of skew beam with parallelogram, right angle trapezoid beam and isosceles trapezoid beam is analyzed, and the Timoshenko deep beam theory considering the influence of shear deformation is put forward in the deflection calculation of small span skew beam bridge. Otherwise, the calculation results of undervalued deflection are as follows: (1) the calculation method of internal force of oblique beam bridge considering the influence of shear deformation and supporting stiffness is established, and the influence of shear deformation and supporting stiffness on the calculation of internal force of oblique beam bridge is analyzed. The calculation formula is verified by finite element software, and it is concluded that shear deformation and supporting stiffness have little influence on the calculation of internal force of single-span inclined beam bridge, and the deduced formula is convenient for designers to calculate the internal force and deformation of inclined deep beam bridge. It promotes the deepening and expanding of the theory of skew bridge calculation and enriches the calculation method of skew beam.
【學(xué)位授予單位】:長(zhǎng)沙理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U441
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 邢志成;;單梁武B型連續(xù)斜梁橋淺析[J];華東公路;1986年05期
2 曾麗;斜梁橋的組合有限元計(jì)算分析[J];四川建筑;2003年04期
3 崔善仁;劉世建;;斜梁橋力學(xué)特點(diǎn)概述[J];山西建筑;2009年19期
4 邢志成;;單梁式簡(jiǎn)支斜梁橋的計(jì)算方法[J];華東公路;1983年06期
5 王松巖;;斜梁與折梁[J];建筑知識(shí);1988年04期
6 張昌林;單跨斜梁的內(nèi)力反力影響線及其程序[J];中南公路工程;1992年02期
7 吳曉,李敏;斜梁在熱狀態(tài)下非線性振動(dòng)分岔[J];力學(xué)與實(shí)踐;1999年06期
8 程翔云;連續(xù)斜梁橋受豎向荷載時(shí)的內(nèi)力近似計(jì)算[J];公路;2004年05期
9 項(xiàng)貽強(qiáng);斜梁橋設(shè)計(jì)施工中的若干問(wèn)題[J];中南公路工程;1991年02期
10 周一勤;;簡(jiǎn)支斜梁橋橋面連續(xù)板的內(nèi)力分析[J];華東公路;1992年03期
相關(guān)會(huì)議論文 前6條
1 項(xiàng)貽強(qiáng);李小強(qiáng);;簡(jiǎn)支超靜定梯形斜梁橋變形的分析計(jì)算及其參數(shù)研究[A];第五屆全國(guó)結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(第三卷)[C];1996年
2 王珂美;許克賓;;鐵路混凝土斜梁橋的受力特性分析[A];第十一屆全國(guó)結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集第Ⅰ卷[C];2002年
3 周綱;龍濤;;部分預(yù)應(yīng)力Ⅰ型組合斜梁橋的設(shè)計(jì)[A];第五屆后張預(yù)應(yīng)力混凝土學(xué)術(shù)交流會(huì)論文集[C];1997年
4 黃平明;毛瑞祥;;多梁式斜梁橋預(yù)加力引起的內(nèi)力與次內(nèi)力研究[A];第九屆全國(guó)混凝土及預(yù)應(yīng)力混凝土學(xué)術(shù)交流會(huì)論文集[C];1996年
5 史建三;;斜梁橋的力學(xué)特性與構(gòu)造設(shè)計(jì)[A];湖北省土木建筑學(xué)會(huì)學(xué)術(shù)論文集(2000-2001年卷)[C];2002年
6 邢志成;;斜梁橋的實(shí)用計(jì)算方法[A];中國(guó)土木工程學(xué)會(huì)市政工程專業(yè)委員會(huì)第一次城市橋梁學(xué)術(shù)會(huì)議論文集[C];1987年
相關(guān)碩士學(xué)位論文 前9條
1 樊超越;多梁式混凝土斜梁橋的車(chē)橋耦合振動(dòng)分析[D];福州大學(xué);2013年
2 郭德群;考慮剪切變形效應(yīng)的單跨斜梁橋受力特性研究[D];長(zhǎng)沙理工大學(xué);2015年
3 唐道寬;連續(xù)斜梁橋結(jié)構(gòu)內(nèi)力的影響因素分析[D];東北林業(yè)大學(xué);2013年
4 曾麗;斜梁橋的組合有限單元方法計(jì)算分析研究[D];西南交通大學(xué);2003年
5 盛玉利;中小型跨徑斜梁橋墩柱受力模式的探討[D];長(zhǎng)安大學(xué);2012年
6 于強(qiáng);不同橫向剛度對(duì)斜梁橋力學(xué)特性影響研究[D];長(zhǎng)沙理工大學(xué);2013年
7 羅聲;斜梁橋病害分析及加固方法研究[D];重慶大學(xué);2006年
8 楊韜;簡(jiǎn)支轉(zhuǎn)連續(xù)斜梁橋靜力性能分析[D];哈爾濱工業(yè)大學(xué);2007年
9 卓秋林;公路簡(jiǎn)支斜梁橋地震反應(yīng)分析[D];福州大學(xué);2005年
,本文編號(hào):2005832
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2005832.html