天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 路橋論文 >

忠建河大橋(鋼桁梁斜拉橋)施工期風(fēng)致抖振響應(yīng)控制措施研究

發(fā)布時間:2018-06-10 14:58

  本文選題:斜拉橋 + 鋼桁主梁; 參考:《廣西大學(xué)》2017年碩士論文


【摘要】:隨著橋梁跨徑的不斷加大和新材料、新結(jié)構(gòu)的大量應(yīng)用,以及制造工藝的日漸優(yōu)化,橋梁結(jié)構(gòu)體系剛度和阻尼呈現(xiàn)出明顯的下降趨勢,橋梁結(jié)構(gòu)對大氣風(fēng)作用的敏感性也越來越突出。劇烈的橋梁風(fēng)致振動將不可避免的影響到橋梁結(jié)構(gòu)安全和施工的順利進(jìn)行,這是亟待解決的問題。因此,對橋梁施工期風(fēng)致抖振響應(yīng)的控制措施進(jìn)行專門的研究具有重要的工程實踐意義。本文依托湖北恩施至來鳳高速公路上的忠建河大橋,針對鋼桁梁斜拉橋的結(jié)構(gòu)特點,主要對大橋鋼桁主梁施工期風(fēng)致抖振響應(yīng)控制措施進(jìn)行了研究。論文首先闡述了國內(nèi)外大跨徑斜拉橋的發(fā)展歷史,介紹了橋梁風(fēng)致抖振的理論基礎(chǔ)和研究現(xiàn)狀,以及鋼桁梁斜拉橋施工風(fēng)振控制的研究進(jìn)展。隨后介紹了橋梁風(fēng)致振動控制的常見措施,簡要介紹了背景工程忠建河鋼桁梁斜拉橋的相關(guān)設(shè)計參數(shù),明確了以設(shè)置抗風(fēng)索的機械措施作為該橋施工期風(fēng)致抖振控制研究的重點。在此基礎(chǔ)上,論文參考規(guī)范要求,確定了該橋施工階段的主梁設(shè)計基本風(fēng)速,利用大型通用流體分析軟件FLUENT,采用數(shù)值模擬的方法獲取了忠建河特大橋施工階段鋼桁主梁的靜力三分力系數(shù);同時,在通用結(jié)構(gòu)軟件ANSYS中建立了忠建河特大橋的結(jié)構(gòu)有限元模型,使用MATLAB模擬程序生成了滿足條件的脈動風(fēng)場和橋梁抖振力荷載時程樣本,并導(dǎo)入到ANSYS模型中進(jìn)行結(jié)構(gòu)動力響應(yīng)分析。論文對鋼桁梁斜拉橋施工階段鋼桁主梁在最大單懸臂和最大雙懸臂兩種典型狀態(tài)下的風(fēng)致靜風(fēng)響應(yīng)和風(fēng)致抖振響應(yīng)進(jìn)行了計算和分析,重點研究了抗風(fēng)索對鋼桁梁斜拉橋鋼桁主梁典型施工狀態(tài)的靜風(fēng)變形和振動抑制效果。得到了如下結(jié)論:(1)不設(shè)置抗風(fēng)索時,鋼桁主梁最大單懸臂狀態(tài)的最大靜風(fēng)位移發(fā)生在懸臂端;最大雙懸臂狀態(tài)的最大靜風(fēng)位移發(fā)生在河側(cè)懸臂端。(2)不設(shè)置抗風(fēng)索時,最大雙懸臂狀態(tài)具有更大的懸臂端主梁抖振位移,更大的抖振位移相應(yīng)導(dǎo)致了更大的主梁抖振內(nèi)力響應(yīng)。(3)設(shè)置抗風(fēng)索后,能夠在一定程度上使鋼桁主梁的靜風(fēng)位移得到抑制。且隨抗風(fēng)索截面積的不同,抑制效果也不同;抗風(fēng)索截面積越大,抑制效果越好?癸L(fēng)索截面積相同條件下,拉結(jié)于地面的方案A比拉結(jié)于塔底承臺的方案B能更好的抑制鋼桁主梁在靜風(fēng)作用下的變形。(4)設(shè)置抗風(fēng)索后,能夠有效抑制施工階段鋼桁主梁的風(fēng)致抖振響應(yīng);且抗風(fēng)索截面積越大,抗風(fēng)索對主梁的抖振位移和抖振內(nèi)力抑制效果越顯著?癸L(fēng)索截面積相同條件下,對主梁的抖振位移和抖振內(nèi)力抑制效果方面,拉結(jié)于地面的方案A整體上明顯優(yōu)于拉結(jié)于塔底承臺的方案B。
[Abstract]:With the increasing span of bridges, new materials, large applications of new structures, and the increasing optimization of manufacturing technology, the stiffness and damping of bridge structure system show an obvious downward trend. The sensitivity of bridge structure to atmospheric wind is more and more prominent. The violent wind-induced vibration of bridges will inevitably affect the safety of bridge structure and the smooth progress of construction, which is an urgent problem to be solved. Therefore, it is of great practical significance to study the control measures of wind-induced buffeting response during bridge construction. Based on the Zhongjian River Bridge on Enshi to Laifeng Expressway in Hubei Province and in view of the structural characteristics of the steel truss girder cable-stayed bridge, the wind-induced buffeting response control measures of the steel truss main girder during the construction period of the bridge are studied in this paper. In this paper, the development history of long span cable-stayed bridge at home and abroad is introduced, the theoretical basis and research status of wind-induced buffeting are introduced, and the research progress of wind-induced vibration control of steel truss cable-stayed bridge is introduced. Then the common measures of wind-induced vibration control are introduced, and the design parameters of Zhongjian River Steel Truss Cable-Stayed Bridge are briefly introduced. The emphasis of the study on wind-induced buffeting control of the bridge during construction is the mechanical measures with wind resistant cables. On this basis, the basic wind speed of the main girder design in the construction stage of the bridge is determined by referring to the requirements of the code. By using fluent, a large scale general fluid analysis software, the static three-point force coefficients of steel truss main girder in construction phase of Zhongjian River Bridge are obtained by numerical simulation. The finite element model of Zhongjian River Bridge is established in the general structure software ANSYS. The pulsating wind field and buffeting load time history samples are generated by MATLAB simulation program. It is introduced into ANSYS model to analyze the dynamic response of the structure. In this paper, the wind-induced static wind response and wind-induced buffeting response of steel truss main girder in two typical states of maximum single cantilever and maximum double cantilever are calculated and analyzed in the construction stage of steel truss cable-stayed bridge. The static wind deformation and vibration suppression effect of steel truss girder main girder in typical construction state of steel truss cable-stayed bridge are studied. It is concluded that the maximum static wind displacement of the steel truss main beam in the single cantilever state occurs at the cantilever end, while the maximum static wind displacement in the maximum double cantilever state occurs at the river side cantilever end. The maximum double cantilever state has larger buffeting displacement of the cantilever end main beam, and the larger buffeting displacement leads to larger buffeting internal force response. 3) after the wind resistant cable is installed, the static wind displacement of the steel truss main beam can be restrained to a certain extent. The inhibition effect is different with the cross section area of the wind rope, and the larger the cross section area of the wind rope is, the better the inhibition effect is. Under the same cross-sectional area of the wind cable, the scheme A and B, which are attached to the ground, can better restrain the deformation of the steel truss girder under the static wind. 4) after the installation of the wind resistant cable, It can effectively restrain the wind-induced buffeting response of steel truss girder in construction stage, and the larger the cross-sectional area of the wind cable, the more significant the effect of the anti-wind cable on the buffeting displacement and the buffeting internal force of the main girder. In the case of the same cross-sectional area of the wind cable, the effect of buffeting displacement and buffeting internal force on the main beam is obviously superior to that of the scheme B in the case of pulling on the ground.
【學(xué)位授予單位】:廣西大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U448.27

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 華強;丁冬;;大跨斜拉橋施工期抗風(fēng)措施方案研究[J];中外公路;2015年04期

2 宮成;劉志文;謝鋼;龔平;;高墩大跨斜拉橋懸臂施工期風(fēng)致振動控制[J];工程力學(xué);2015年S1期

3 唐啟;李鑫;游新鵬;陳宏寶;;基于抖振分析的分幅式斜拉橋施工期抗風(fēng)措施研究[J];中國港灣建設(shè);2015年06期

4 夏培華;朱浩;黃燦;;山區(qū)特大公路鋼桁梁斜拉橋架設(shè)方案研究[J];施工技術(shù);2014年S2期

5 李永樂;夏飛龍;李龍;萬田保;盛黎明;;大跨度鋼桁梁斜拉橋無砟軌道橋面豎向靜力剛度特性[J];鐵道學(xué)報;2014年12期

6 張茜;周緒紅;狄謹(jǐn);王繼承;;大跨度鋼箱梁斜拉橋施工過程風(fēng)致抖振時域分析及抗風(fēng)措施[J];長安大學(xué)學(xué)報(自然科學(xué)版);2013年01期

7 何晗欣;劉健新;;大跨窄懸索橋抗風(fēng)措施及其優(yōu)化研究[J];公路交通科技;2010年03期

8 朱樂東;王淼;郭震山;丁泉順;;斜風(fēng)作用下大跨度斜拉橋雙懸臂狀態(tài)抖振性能[J];工程力學(xué);2006年04期

9 朱樂東,曹映泓,丁泉順,徐建英;斜風(fēng)作用下大跨度斜拉橋裸塔抖振性能[J];同濟大學(xué)學(xué)報(自然科學(xué)版);2005年07期

10 周志勇,陳艾榮,項海帆;渦方法用于橋梁斷面氣動導(dǎo)數(shù)和顫振臨界風(fēng)速的數(shù)值計算[J];振動工程學(xué)報;2002年03期

相關(guān)碩士學(xué)位論文 前3條

1 張茜;大跨度斜拉橋風(fēng)致抖振響應(yīng)的非線性時程分析[D];長安大學(xué);2007年

2 文永奎;大跨度斜拉橋施工階段風(fēng)振控制研究[D];同濟大學(xué);2006年

3 秦建軍;大跨度斜拉橋最大懸臂施工狀態(tài)抖振響應(yīng)及控制研究[D];湖南大學(xué);2004年

,

本文編號:2003616

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/2003616.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶05508***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com