高速公路交通異常事件檢測算法研究
本文選題:陰影去除 + Kalman濾波算法。 參考:《蘭州交通大學(xué)》2017年碩士論文
【摘要】:近年來,隨著計算機(jī)存儲和運(yùn)算能力的不斷提高,人工智能、模式識別技術(shù)的迅猛發(fā)展,基于視頻的交通事件檢測技術(shù)成為智能交通領(lǐng)域研究的熱點(diǎn)問題。交通事件自動檢測系統(tǒng)是交通視頻監(jiān)控系統(tǒng)智能化和自動化的關(guān)鍵,為快速處理交通事件、減少交通延誤、避免二次交通事故的發(fā)生提供條件,為高速公路運(yùn)營管理提供了新的突破口。但如何高效、準(zhǔn)確、快速地實(shí)現(xiàn)交通事件自動檢測,仍是當(dāng)前智能交通領(lǐng)域面對的一大難題。本文從實(shí)際應(yīng)用出發(fā),以高速公路視頻序列為研究對象,從運(yùn)動目標(biāo)檢測、跟蹤和異常行為描述等幾個關(guān)鍵技術(shù)著手進(jìn)行研究,設(shè)計了高速公路逆行、停車、變道異常事件自動檢測算法。本文對上述三種異常事件的研究主要包括以下幾個方面的內(nèi)容:在運(yùn)動目標(biāo)檢測方面,采用均值法建立背景模型,以背景差法提取運(yùn)動目標(biāo)前景;針對存在陰影的運(yùn)動目標(biāo)前景,提出了一種基于邊緣和HSV顏色空間相結(jié)合的方法去除陰影,并結(jié)合形態(tài)學(xué)處理方法提取出完整的運(yùn)動目標(biāo)前景,為有效的運(yùn)動目標(biāo)跟蹤提供了基礎(chǔ)。在運(yùn)動目標(biāo)跟蹤方面,以車輛的質(zhì)心和面積為基本特征對車輛進(jìn)行跟蹤,結(jié)合Kalman濾波算法尋求運(yùn)動目標(biāo)特征的最優(yōu)估計,利用歐式距離計算運(yùn)動目標(biāo)的位置距離和面積大小差異尋找最佳匹配完成運(yùn)動目標(biāo)的跟蹤;針對車輛間遮擋會使跟蹤目標(biāo)丟失的現(xiàn)象,本文提出了面積篩選的方法用不同的方式對車輛進(jìn)行跟蹤,最終獲得車輛的運(yùn)動軌跡,為異常事件的判斷提供了依據(jù)。在異常事件檢測方面,通過分析車輛的運(yùn)動軌跡可以直觀的了解車輛的運(yùn)動方向,將車輛的運(yùn)動方向與道路規(guī)定的正方向進(jìn)行比較判斷車輛逆行事件;通過分析車輛的運(yùn)動軌跡可以間接獲得車輛的瞬時速度、加速度、質(zhì)心位置變化等交通參數(shù),分析這些交通參數(shù)的變化判斷車輛是否發(fā)生違章停車事件;通過分析車輛運(yùn)動軌跡與基準(zhǔn)車道線間距離的離散程度判斷車輛是否發(fā)生變道事件。本文對不同路段高速公路實(shí)際交通視頻序列進(jìn)行測試,實(shí)驗結(jié)果驗證了本文異常事件自動檢測算法行之有效,能夠準(zhǔn)確的檢測出逆行、停車、變道異常事件,具有很好的實(shí)用性。
[Abstract]:In recent years, with the continuous improvement of computer storage and computing ability, artificial intelligence, pattern recognition technology, the rapid development of video-based traffic incident detection technology has become a hot issue in the field of intelligent transportation. The automatic detection system of traffic events is the key to intelligent and automatic traffic video surveillance system. It provides conditions for dealing with traffic incidents quickly, reducing traffic delays and avoiding secondary traffic accidents. It provides a new breakthrough for highway operation and management. However, how to realize the automatic detection of traffic events efficiently, accurately and quickly is still a big problem in the field of intelligent transportation. Based on the practical application, this paper takes the video sequence of freeway as the research object, studies several key technologies such as moving target detection, tracking and abnormal behavior description, and designs the retrograde and parking of expressway. An algorithm for automatic detection of abnormal events with variable traces. In this paper, the research of the above three kinds of abnormal events mainly includes the following aspects: in the aspect of moving target detection, the background model is established by means method, and the foreground of moving target is extracted by background difference method; Aiming at the foreground of moving target with shadow, a method based on edge and HSV color space is proposed to remove shadow, and the whole foreground of moving target is extracted by morphological processing. It provides the foundation for effective moving target tracking. In the aspect of moving target tracking, the center of mass and area of the vehicle are taken as the basic features to track the vehicle, and the Kalman filter algorithm is used to find the optimal estimation of the moving target feature. Using Euclidean distance to calculate the difference of position distance and area size of moving target, the best match is found to complete the tracking of moving target, and the phenomenon that the tracking object will be lost due to the occlusion between vehicles. In this paper, an area screening method is proposed to track the vehicle in different ways, and finally to obtain the moving track of the vehicle, which provides the basis for the judgement of abnormal events. In the aspect of abnormal event detection, by analyzing the moving track of the vehicle, the moving direction of the vehicle can be intuitively understood, and the moving direction of the vehicle can be compared with the positive direction of the road to judge the retrograde event of the vehicle. Traffic parameters such as instantaneous velocity, acceleration, change of center of mass position can be obtained indirectly by analyzing the moving track of vehicle, and the change of these traffic parameters can be used to judge whether the vehicle has illegal parking event or not. Based on the analysis of the dispersion of the distance between the vehicle track and the reference lane, whether the vehicle has changed track event or not is judged. In this paper, the actual traffic video sequences of different sections of highway are tested, and the experimental results show that the algorithm of automatic detection of abnormal events in this paper is effective, and can accurately detect the abnormal events of retrograde, parking and changing roads. It has good practicability.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U491;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 郭偉;劉鑫焱;肖振久;;基于邊緣前景的混合高斯模型目標(biāo)檢測[J];計算機(jī)工程與應(yīng)用;2015年18期
2 楊昌瑞;;基于視頻圖像的車輛計數(shù)新方法[J];公路工程;2015年03期
3 范文超;李曉宇;魏凱;陳興林;;基于改進(jìn)的高斯混合模型的運(yùn)動目標(biāo)檢測[J];計算機(jī)科學(xué);2015年05期
4 路紅;李宏勝;費(fèi)樹岷;程勇;;融合塊顯著質(zhì)心描述和多級關(guān)聯(lián)的多目標(biāo)跟蹤[J];系統(tǒng)工程與電子技術(shù);2015年09期
5 邱一川;張亞英;劉春梅;;多特征融合的車輛陰影消除[J];中國圖象圖形學(xué)報;2015年03期
6 郭景全;;我國高速公路交通事故現(xiàn)狀及特點(diǎn)分析[J];黑龍江交通科技;2015年03期
7 趙娜;袁家斌;徐晗;;智能交通系統(tǒng)綜述[J];計算機(jī)科學(xué);2014年11期
8 易世春;李克強(qiáng);郭君斌;高秀麗;;基于邊緣分布及特征聚類的車道標(biāo)記線檢測[J];汽車工程;2014年10期
9 王海;蔡英鳳;林國余;張為公;;基于方向可變Haar特征和雙曲線模型的車道線檢測方法[J];交通運(yùn)輸工程學(xué)報;2014年05期
10 李浩亮;水清河;范文兵;楊瀟楠;;一種新穎的基于邊緣檢測的車輛陰影去除方法[J];鄭州大學(xué)學(xué)報(工學(xué)版);2014年05期
相關(guān)碩士學(xué)位論文 前5條
1 王翔宇;高速公路視頻監(jiān)控系統(tǒng)中車輛識別與道路狀態(tài)檢測的研究[D];北京工業(yè)大學(xué);2015年
2 張正炎;高速公路交通視頻監(jiān)控系統(tǒng)的設(shè)計與實(shí)現(xiàn)[D];電子科技大學(xué);2014年
3 楊媛;基于目標(biāo)運(yùn)動軌跡的交通狀況及異常交通事件檢測[D];長安大學(xué);2014年
4 楊梅;基于視頻與檢測線圈的高速公路交通事件檢測系統(tǒng)研究[D];長安大學(xué);2013年
5 朱會強(qiáng);基于視頻跟蹤的車輛行為分析技術(shù)研究[D];長安大學(xué);2011年
,本文編號:1996936
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1996936.html