軌道交通跨江連續(xù)梁橋施工監(jiān)控技術(shù)研究
本文選題:軌道交通 + 預(yù)應(yīng)力鋼筋混凝土連續(xù)梁橋��; 參考:《河南工業(yè)大學(xué)》2017年碩士論文
【摘要】:軌道交通以其低碳環(huán)保、速度快、準(zhǔn)時、安全舒適、客運量大等技術(shù)特點,將成為大城市公共交通的發(fā)展方向。預(yù)應(yīng)力混凝土連續(xù)梁橋以其獨特的優(yōu)點,被廣泛應(yīng)用在公路橋、鐵路橋、城市立交橋及軌道交通。預(yù)應(yīng)力混凝土連續(xù)梁橋懸臂澆筑法以其獨特的施工特點,被廣泛采用。但掛籃懸臂施工過程比較復(fù)雜,需經(jīng)歷體系轉(zhuǎn)換的過程。施工過程中的不確定因素會對橋梁的受力狀態(tài)和線形有很大影響,如不加以控制,可能會造成橋梁合龍困難,甚至?xí)斐稍诮ㄟ^程中橋梁坍塌。所以為了保證橋梁施工質(zhì)量和安全,橋梁施工監(jiān)控是不可缺少的的重要部分。因此,本文以軌道交通跨清排江連續(xù)梁橋為研究背景,對其掛籃懸臂施工過程進行施工監(jiān)控技術(shù)研究。主要研究內(nèi)容如下:(1)對跨清排江連續(xù)梁橋施工過程的有限元仿真分析,根據(jù)橋現(xiàn)場實際施工得到的橋梁材料特性、施工誤差及邊界約束情況對計算模型進行修正。(2)對該橋全過程施工階段的結(jié)構(gòu)變形、應(yīng)變監(jiān)控,以自適應(yīng)監(jiān)控方法指導(dǎo)該橋的實施。(3)通過數(shù)值模擬與實測數(shù)據(jù)的對比分析,控制立模標(biāo)高和關(guān)鍵截面應(yīng)力。主要研究結(jié)論如下:(1)橋梁施工監(jiān)測的實施對軌道交通跨清排江連續(xù)梁橋的懸臂掛籃施工提供了全的、及時的監(jiān)測和控制工作,為保證施工質(zhì)量、工程進度和結(jié)構(gòu)安全提供了有力的保障;在每一個梁段懸臂澆筑過程中,均進行了嚴(yán)格的檢查和提供了準(zhǔn)確的現(xiàn)場實測數(shù)據(jù),發(fā)現(xiàn)問題及時解決,為大橋的順利施工提供了有力支持;(2)主梁在懸臂施工過程中和成橋階段,主梁頂板、底板的實測應(yīng)力變化無明顯的突變發(fā)生,其變化趨勢與理論計算結(jié)果基本保持一致,且控制精度均基本滿足±1.5MPa的允許控制偏差要求,結(jié)構(gòu)最終實測受力狀態(tài)在一般預(yù)應(yīng)力混凝土橋的容許范圍之內(nèi),結(jié)構(gòu)應(yīng)力監(jiān)控表現(xiàn)良好;結(jié)構(gòu)在施工過程及成橋階段表現(xiàn)出的變形狀態(tài)與理論計算及設(shè)計、監(jiān)測要求基本一致,包括撓度控制、結(jié)構(gòu)合龍精度以及成橋線形指標(biāo)等,結(jié)構(gòu)變形監(jiān)控表現(xiàn)良好;(3)結(jié)構(gòu)施工過程中,主梁內(nèi)力和結(jié)構(gòu)變形均得到了較好的控制,大橋施工全過程屬于受控狀態(tài),結(jié)構(gòu)各項成橋指標(biāo)表現(xiàn)良好。
[Abstract]:Rail transit, with its low carbon environmental protection, fast speed, punctuality, safety and comfort, large passenger capacity and other technical characteristics, will become the development direction of public transportation in big cities. Prestressed concrete continuous beam bridges are widely used in highway bridges, railway bridges, urban flyovers and rail transit due to their unique advantages. The cantilever pouring method of prestressed concrete continuous beam bridge is widely used for its unique construction characteristics. But the construction process of hanging basket cantilever is complex and needs to go through the process of system transformation. The uncertain factors in the construction process will have a great influence on the force state and the line shape of the bridge. If it is not controlled, it may cause the bridge closure difficulty and even cause the bridge to collapse in the process of construction. Therefore, in order to ensure the quality and safety of bridge construction, bridge construction monitoring is an indispensable part. Therefore, based on the research background of rail transit continuous beam bridge across Qingpajiang River, the construction monitoring technology of the cantilever construction process is studied in this paper. The main research contents are as follows: (1) the finite element simulation analysis of the construction process of the continuous beam bridge across the Qinghai-Paijiang River, according to the bridge material characteristics obtained from the actual construction of the bridge, The calculation model is modified by construction error and boundary constraint. (2) the deformation and strain of the bridge during the whole construction stage are monitored, and the self-adaptive monitoring method is used to guide the implementation of the bridge. The comparison and analysis between the numerical simulation and the measured data are carried out. Control vertical die elevation and key section stress. The main research conclusions are as follows: (1) the implementation of bridge construction monitoring provides the whole, timely monitoring and control work for the cantilever hanging basket construction of the rail transit continuous beam bridge across the Qingpai River, in order to ensure the construction quality. The progress of the project and the safety of the structure provide a powerful guarantee. During the casting of the cantilever in each section of the beam, strict inspection is carried out and accurate field measured data are provided to solve the problem in a timely manner. It provides a strong support for the successful construction of the bridge. During the cantilever construction and the completion stage of the bridge, there is no obvious abrupt change in the measured stress change of the main beam roof and floor, and the change trend is basically consistent with the theoretical calculation results. And the control accuracy basically meets 鹵1.5MPa 's allowable control deviation requirement. The ultimate measured stress state of the structure is within the allowable range of the general prestressed concrete bridge, and the structure stress monitoring performance is good. The deformation state of the structure in the construction process and the bridge completion stage is basically consistent with the theoretical calculation and design, monitoring requirements, including deflection control, structural closure accuracy and bridge alignment index, etc. In the process of construction, the internal force of the main beam and the deformation of the structure have been well controlled. The whole construction process of the bridge belongs to the controlled state, and all the structural indexes of the bridge are good.
【學(xué)位授予單位】:河南工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U445.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳軼鵬;李文會;白蘋;;軌道交通高架橋梁發(fā)展方向探討[J];都市快軌交通;2013年04期
2 李志斌;;淺談大跨度預(yù)應(yīng)力混凝土連續(xù)剛構(gòu)主梁預(yù)拱度的設(shè)置[J];黑龍江交通科技;2011年10期
3 柏俊博;;大跨度預(yù)應(yīng)力混凝土連續(xù)梁橋懸臂施工控制[J];中華建設(shè);2011年04期
4 陳思甜;王志鵬;劉鵬;原媛;;菜園壩大橋B匝道連續(xù)剛構(gòu)橋施工控制[J];重慶交通大學(xué)學(xué)報(自然科學(xué)版);2008年01期
5 姚國文;宋文鋒;周志祥;;多跨連續(xù)剛構(gòu)橋水平頂推力與合龍順序優(yōu)化[J];公路與汽運;2008年01期
6 俞濟濤;;沿海城市軌道交通線路穿越跨河流橋梁處理方案分析[J];鐵道工程學(xué)報;2007年06期
7 張永水;曹淑上;;連續(xù)剛構(gòu)橋線形控制方法研究[J];中外公路;2006年06期
8 王衛(wèi)鋒;蘇堪祥;顏全勝;李靜;;廣珠西線珠江大橋的施工控制[J];公路;2006年08期
9 張謝東,詹昊,舒洪波,董熙強;大跨度預(yù)應(yīng)力混凝土連續(xù)梁橋合龍施工技術(shù)研究[J];橋梁建設(shè);2005年02期
10 陳列,徐公望;高墩大跨預(yù)應(yīng)力混凝土橋橋式方案及合龍順序選擇[J];橋梁建設(shè);2005年01期
相關(guān)碩士學(xué)位論文 前6條
1 陳偉;P.C.連續(xù)梁橋施工監(jiān)控及關(guān)鍵施工技術(shù)研究[D];南昌大學(xué);2013年
2 陶毓先;大跨度梁橋的施工監(jiān)控[D];合肥工業(yè)大學(xué);2012年
3 夏偉;預(yù)應(yīng)力混凝土連續(xù)梁橋施工監(jiān)控研究[D];鄭州大學(xué);2011年
4 趙劍鋒;大跨度混凝土箱梁橋溫度場及其效應(yīng)研究[D];西南交通大學(xué);2010年
5 陳默;大跨徑高速鐵路連續(xù)梁橋仿真分析[D];蘭州交通大學(xué);2010年
6 白光耀;大跨度連續(xù)剛構(gòu)橋的施工監(jiān)控與結(jié)構(gòu)仿真分析[D];廣西大學(xué);2006年
,本文編號:1986098
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1986098.html