天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 路橋論文 >

基于案例推理的高速公路清障救援資源需求預(yù)測(cè)研究

發(fā)布時(shí)間:2018-05-30 09:20

  本文選題:高速公路 + 清障救援 ; 參考:《交通運(yùn)輸部公路科學(xué)研究所》2017年碩士論文


【摘要】:隨著我國(guó)高速公路里程與機(jī)動(dòng)車保有量的迅速增長(zhǎng),使得高速公路的安全、高效運(yùn)營(yíng)的保障任務(wù)日益艱巨。作為高速公路“保通保暢”工作實(shí)施的重要基礎(chǔ)條件,清障救援資源對(duì)減少高速公路交通事故所造成生命財(cái)產(chǎn)損失、提高路網(wǎng)通行效率等方面發(fā)揮著重要作用。針對(duì)清障救援資源的配置管理使用,合理地預(yù)測(cè)需求是進(jìn)行后續(xù)資源配置調(diào)度等工作的前提條件。研究高速公路清障救援資源配置需求預(yù)測(cè)問題具有重要的理論與實(shí)際意義。通過介紹案例推理方法理論框架并分析其應(yīng)用于應(yīng)急救援領(lǐng)域的優(yōu)勢(shì),將案例推理引入清障救援資源需求預(yù)測(cè)。通過分析常用知識(shí)表達(dá)方法,提出資源預(yù)測(cè)案例的二元組框架表示方法。從道路路線、路基路面等方面分析高速公路交通事故影響因素,構(gòu)建包含道路長(zhǎng)度等要素在內(nèi)的案例特征屬性空間。根據(jù)目前救援資源實(shí)際使用狀況及裝備參數(shù)統(tǒng)計(jì)數(shù)據(jù),形成案例數(shù)量結(jié)果的分類型分能力表示方法。針對(duì)案例特征屬性空間構(gòu)建過程中可能存在的冗余信息,依據(jù)特征選擇過程一般過程及搜索策略,在闡述隨機(jī)森林方法原理、構(gòu)建過程、關(guān)鍵參數(shù)、應(yīng)用優(yōu)勢(shì)的基礎(chǔ)上,應(yīng)用隨機(jī)森林方法袋外誤差降低率衡量特征重要性程度,采取后向搜索策略對(duì)案例特征進(jìn)行選擇;趯(shí)際數(shù)據(jù)給出了特征算法的實(shí)例應(yīng)用過程,確定包含了道路長(zhǎng)度,交通量等關(guān)鍵因素的清障救援車輛數(shù)量預(yù)測(cè)特征集合。通過對(duì)傳統(tǒng)案例檢索方法的優(yōu)缺點(diǎn)分析,提出結(jié)合徑向基神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)案例檢索以提高檢索過程效率。通過介紹徑向基神經(jīng)網(wǎng)絡(luò)一般原理及常用學(xué)習(xí)方法,針對(duì)徑向基網(wǎng)絡(luò)隱含層難以確定的問題,設(shè)計(jì)了利用動(dòng)態(tài)衰減方法改進(jìn)徑向基網(wǎng)絡(luò)學(xué)習(xí)方法,并經(jīng)過實(shí)例數(shù)據(jù)驗(yàn)證改進(jìn)后的徑向基神經(jīng)網(wǎng)絡(luò)檢索能在保證檢索精度的情況下有效提高學(xué)習(xí)的速度。
[Abstract]:With the rapid growth of highway mileage and the number of motor vehicles in our country, the task of ensuring highway safety and efficient operation is becoming increasingly arduous. As an important basic condition for the implementation of the expressway "Baotong Baochang", the obstacle clearing and rescue resources play an important role in reducing the loss of life and property caused by the expressway traffic accident and improving the efficiency of the road network. In view of the allocation management and use of obstacle clearing and rescue resources, reasonable prediction of demand is the prerequisite for the subsequent resource allocation and scheduling. It is of great theoretical and practical significance to study the demand prediction of freeway rescue resource allocation. By introducing the framework of Case-Based reasoning (CBR) and analyzing its advantages in the field of emergency rescue, Case-Based reasoning (CBR) is introduced to predict the resource demand of obstacle clearing and rescue. Based on the analysis of common knowledge representation methods, a binary group framework representation method for resource prediction cases is proposed. This paper analyzes the influence factors of expressway traffic accidents from the aspects of road route, roadbed and pavement, and constructs the case characteristic attribute space including road length and other factors. According to the statistical data of the actual use of rescue resources and the equipment parameters at present, a method of expressing the ability of classification and classification of the results of the number of cases is formed. According to the general process of feature selection and the search strategy, the principle, construction process, key parameters and application advantages of stochastic forest method are expounded, based on the redundant information that may exist in the process of constructing case feature attribute space, based on the general process of feature selection and the search strategy. The importance of feature is measured by the reduction rate of out-of-bag error of stochastic forest method, and the case feature is selected by backward search strategy. Based on the actual data, the application process of the feature algorithm is given, and the prediction feature set of the number of obstacle clearing and rescue vehicles including road length, traffic volume and other key factors is determined. Based on the analysis of the advantages and disadvantages of the traditional case retrieval methods, a learning case retrieval method combined with radial basis function neural network (RBF) was proposed to improve the efficiency of the retrieval process. This paper introduces the general principle and common learning methods of radial basis function neural network, aiming at the problem that the hidden layer of radial basis function network is difficult to be determined, a dynamic attenuation method is designed to improve the learning method of radial basis function network. The improved radial basis function neural network retrieval method can effectively improve the learning speed under the condition of guaranteeing the retrieval accuracy.
【學(xué)位授予單位】:交通運(yùn)輸部公路科學(xué)研究所
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U492.8

【參考文獻(xiàn)】

相關(guān)期刊論文 前7條

1 黃李原;周煒;張國(guó)勝;;高速公路清障救援資源需求預(yù)測(cè)綜述[J];交通節(jié)能與環(huán)保;2016年05期

2 鄧守城;吳青;石兵;初秀民;陳先橋;;基于案例推理的水上交通突發(fā)事件應(yīng)急響應(yīng)資源需求預(yù)測(cè)[J];中國(guó)安全科學(xué)學(xué)報(bào);2014年03期

3 趙一兵;高虹霓;馮少博;;基于支持向量機(jī)回歸的應(yīng)急物資需求預(yù)測(cè)[J];計(jì)算機(jī)仿真;2013年08期

4 宋曉宇;劉春會(huì);常春光;;基于改進(jìn)GM(1,1)模型的應(yīng)急物資需求量預(yù)測(cè)[J];沈陽(yáng)建筑大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年06期

5 湯辛華;;高速公路應(yīng)如何配置清障車[J];商用汽車;2009年12期

6 姜麗紅,劉豹;案例推理在智能化預(yù)測(cè)支持系統(tǒng)中的應(yīng)用研究[J];決策與決策支持系統(tǒng);1996年04期

7 高陽(yáng),,蔡紅彬;基于案例的推理及其在專家系統(tǒng)中的應(yīng)用[J];中南礦冶學(xué)院學(xué)報(bào);1994年03期

相關(guān)博士學(xué)位論文 前2條

1 張彥春;鐵路防洪應(yīng)急物資優(yōu)化布局及調(diào)配研究[D];中南大學(xué);2011年

2 李建洋;基于粗糙集與前饋網(wǎng)絡(luò)的案例智能系統(tǒng)的研究[D];合肥工業(yè)大學(xué);2009年

相關(guān)碩士學(xué)位論文 前2條

1 陳旭哲;高速公路應(yīng)急車輛資源需求預(yù)測(cè)與配置[D];北京交通大學(xué);2014年

2 朱莎;突發(fā)事件應(yīng)急血液需求預(yù)測(cè)研究[D];上海交通大學(xué);2013年



本文編號(hào):1954764

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1954764.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶efa5d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
精品熟女少妇一区二区三区| 熟女免费视频一区二区| 在线播放欧美精品一区| 在线免费视频你懂的观看| 日韩欧美国产三级在线观看| 欧美精品女同一区二区| 一区二区三区四区亚洲另类| 极品少妇嫩草视频在线观看| 黄色激情视频中文字幕| 欧美人妻免费一区二区三区| 日本一区二区三区久久娇喘| 日韩成人免费性生活视频| 国产一区二区三区草莓av| 日韩精品视频香蕉视频| 免费观看一级欧美大片| 中文字幕在线五月婷婷| 四季精品人妻av一区二区三区| 中文字幕精品一区二区年下载| 日韩中文字幕在线不卡一区| 成人午夜激情免费在线| 国产欧美日韩视频91| 国产成人精品国产成人亚洲 | 五月天丁香亚洲综合网| 国产精品十八禁亚洲黄污免费观看| 久久偷拍视频免费观看| 国产级别精品一区二区视频| 久久少妇诱惑免费视频| 果冻传媒精选麻豆白晶晶| 亚洲中文字幕乱码亚洲| 精品老司机视频在线观看| 国产欧美一区二区三区精品视| 果冻传媒精选麻豆白晶晶| 色婷婷成人精品综合一区| 大香蕉伊人精品在线观看| 五月婷婷六月丁香狠狠| 色婷婷国产精品视频一区二区保健| 日本av一区二区不卡| 欧美成人久久久免费播放| 伊人久久青草地综合婷婷| 中字幕一区二区三区久久蜜桃| 青草草在线视频免费视频|