地震荷載作用下懸索橋隧道式錨碇邊坡穩(wěn)定性分析
發(fā)布時間:2018-05-22 11:13
本文選題:懸索橋 + 隧道式錨碇邊坡 ; 參考:《西南交通大學(xué)》2017年碩士論文
【摘要】:大跨度懸索橋因自身的優(yōu)勢在高山峽谷地區(qū)道路建設(shè)中得到了越來越廣泛的運(yùn)用,隧道式錨碇作為懸索橋的一種重要錨固形式,具有受力合理、工程造價低、環(huán)境破壞小等特點(diǎn)。懸索橋正常使用期間隧道錨邊坡的穩(wěn)定性問題,特別是地震作用下錨碇邊坡穩(wěn)定性對橋梁結(jié)構(gòu)功能發(fā)揮具有極為重要的影響。本文依托四川雅安至康定高速工程瀘定大渡河懸索橋隧道錨工程,對不同地震荷載情況下隧道式錨碇邊坡穩(wěn)定性進(jìn)行了深入分析,主要研究工作如下:(1)基于隧道錨邊坡工程地質(zhì)條件,運(yùn)用MIDAS-GTS軟件建立了包含隧道式錨碇、下穿公路隧道、主墩以及山體的三維地質(zhì)模型,通過FLAC3D有限差分軟件模擬分析了在成橋狀態(tài)1倍設(shè)計纜力作用下瀘定大渡河懸索橋隧道式錨碇邊坡的穩(wěn)定性,邊坡淺表層安全系數(shù)為2.45,失穩(wěn)模式為邊坡表層局部將沿著巖土界面(含礫粘土與下伏巖體接觸面)向臨空面發(fā)生滑移;深部巖體的安全系數(shù)為3.75,沿錨碇周圍局部巖體發(fā)生破壞。(2)通過三維數(shù)值模擬,分析了 50年超越概率10%地震作用下(E1地震),瀘定大渡河懸索橋隧道式錨碇邊坡的穩(wěn)定性,通過點(diǎn)安全系數(shù)指標(biāo)分析表明,邊坡整體較為穩(wěn)定,但表層含礫粘土穩(wěn)定性較差,存在失穩(wěn)可能。(3)模擬分析了 50年超越概率2%地震作用下(E2地震),瀘定大渡河懸索橋隧道式錨碇邊坡的穩(wěn)定性,邊坡整體穩(wěn)定性相對較差,表層含礫粘土將沿著其與下伏巖體接觸面向臨空面發(fā)生滑移。(4)基于彈性理論Mindlin解和極限平衡理論,采用擬靜力法簡化地震力,計算了隧道式錨碇在E1、E2地震作用下的穩(wěn)定性,得出在E1、E2地震作用下,錨碇邊坡淺表層的穩(wěn)定系數(shù)分別為1.13和1.06,邊坡穩(wěn)定性理論分析結(jié)果與三維數(shù)值模擬結(jié)果基本一致。本文的研究工作可為高烈度山區(qū)大跨度懸索橋隧道式錨碇邊坡的抗震穩(wěn)定性分析與工程設(shè)計提供指導(dǎo)與參考,具有重要的工程實(shí)際意義。
[Abstract]:The long-span suspension bridge is more and more widely used in the road construction in the high mountain and gorge area because of its own advantages. As an important anchoring form of the suspension bridge, the tunnel Anchorage has reasonable force and low engineering cost. Small environmental damage and other characteristics. During the normal operation of suspension bridge, the stability of tunnel anchor slope, especially the stability of anchor slope under seismic action, has an extremely important influence on the bridge structure function. In this paper, the stability of tunnel Anchorage slope under different earthquake loads is deeply analyzed by relying on the tunnel anchor engineering of Luding Dadu River suspension Bridge in Ya'an to Kangding High Speed Project, Sichuan Province. The main research work is as follows: (1) based on the engineering geological conditions of tunnel anchor slope, a three-dimensional geological model including tunnel Anchorage, underpass highway tunnel, main pier and mountain body is established by using MIDAS-GTS software. The stability of the tunnel Anchorage slope of the Luding Dadu River suspension Bridge under the action of double design cable force in the state of the bridge is simulated by FLAC3D finite difference software. The safety factor of the shallow surface of the slope is 2.45. The model of instability is that the surface of the slope will slip along the interface of the rock and soil (the interface between the gravel clay and the underlying rock mass) to the face of the goaf. The safety factor of the deep rock mass is 3.75, and the local rock mass around the Anchorage is destroyed. The stability of the tunnel Anchorage slope of the suspension bridge of Dadu River in Luding is analyzed by means of three-dimensional numerical simulation under the action of 10% earthquake surpassing probability for 50 years under the action of E 1 earthquake and Luding Dadu River suspension bridge tunnel Anchorage slope. The analysis of the index of point safety coefficient shows that the slope is stable as a whole, but the surface gravelly clay is less stable. The stability of the tunnel Anchorage slope of the Luding Dadu River suspension Bridge under the action of 2% earthquake over 50 years is simulated and analyzed. The overall stability of the slope is relatively poor. On the basis of elastic theory Mindlin solution and limit equilibrium theory, quasi static method is used to simplify seismic force, and the stability of tunnel Anchorage under E1E 2 earthquake is calculated. The stability coefficients of shallow surface layer of Anchorage slope are 1.13 and 1.06 respectively under E _ 1 / E _ 2 earthquake. The results of theoretical analysis of slope stability are in good agreement with those of three-dimensional numerical simulation. The research work in this paper can provide guidance and reference for seismic stability analysis and engineering design of tunnel Anchorage slope of long-span suspension bridge in high intensity mountain area, and has important engineering practical significance.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U448.25;U441
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李家平,張子新,黃宏偉,李永盛;寧波慶豐大橋錨碇室內(nèi)相似模型試驗(yàn)研究[J];同濟(jì)大學(xué)學(xué)報(自然科學(xué)版);2005年08期
2 王宗仁,王崇旭,莊值政,謝明;四渡河橋隧道式錨碇開挖支護(hù)工藝[J];施工技術(shù);2005年S1期
3 劉子振;王長征;言志信;;樁臺式錨碇設(shè)計優(yōu)化及應(yīng)用[J];森林工程;2006年03期
4 張少軍;;陽邏長江公路大橋南錨碇基礎(chǔ)工程建設(shè)關(guān)鍵技術(shù)[J];世界橋梁;2006年02期
5 廖新;;大體積錨碇開挖施工探討[J];科技咨詢導(dǎo)報;2007年28期
6 白雪o,
本文編號:1921827
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1921827.html
教材專著