山區(qū)橋梁空心薄壁高墩日照溫度場及溫度效應(yīng)研究
本文選題:空心薄壁高墩 + 日照溫度場。 參考:《長沙理工大學(xué)》2015年碩士論文
【摘要】:空心薄壁高墩作為山區(qū)大跨徑橋梁重要的下部結(jié)構(gòu),置于外界環(huán)境中,受到太陽照射、大氣氣溫等的影響,其結(jié)構(gòu)內(nèi)外表面的溫度發(fā)生變化,但由于混凝土的導(dǎo)熱性能差,導(dǎo)致空心薄壁高墩的內(nèi)外表面溫度變化速度不一致,形成較大的溫差,進(jìn)而形成較大的溫差應(yīng)力和位移。有時溫度應(yīng)力和位移過大,會引起裂縫或墩身歪斜,對橋梁的安全和正常運(yùn)行造成嚴(yán)重的影響。因日照溫度效應(yīng)引起的橋梁破壞事故越來越多,因此,迫切需要研究空心墩的溫度效應(yīng),來防范和降低這種作用對結(jié)構(gòu)的破壞。本文以工程實(shí)例為背景,研究了山區(qū)橋梁的空心薄壁高墩的溫度分布和效應(yīng)。主要工作和所得結(jié)論如下:(1)翻閱大量國內(nèi)外文獻(xiàn),較詳細(xì)的介紹了空心薄壁高墩的溫度形成機(jī)理、溫度分布的影響因素以及幾種溫度荷載的特點(diǎn),介紹了計算空心薄壁高墩溫度場、溫度效應(yīng)的方法,以及求解其所需的熱傳導(dǎo)邊界條件的計算方法。(2)介紹背景橋梁的基本資料,確定現(xiàn)場實(shí)測方案,分析高墩的溫度場分布,根據(jù)實(shí)測資料,結(jié)合相關(guān)規(guī)范和理論,用Mat Lab回歸擬合出高墩的指數(shù)溫度梯度曲線,提出了適合橋址地區(qū)的空心薄壁墩的溫度梯度模式:橋墩橫向T_x=17.82e~(-8.423x) ,橋墩縱向T_y=17.61e~(9.428y),,并對比分析擬合公式和實(shí)測數(shù)據(jù)的差別,顯示數(shù)據(jù)吻合較好。(3)結(jié)合橋址地理數(shù)據(jù)和氣象條件,利用大型通用有限元軟件Midas FEA建立空心墩截面溫度模型,分析橋墩的溫度場,對比分析計算結(jié)果、實(shí)測數(shù)據(jù)以及擬合的溫差分布曲線的差別,結(jié)果顯示3條曲線基本吻合,證明有限元軟件模擬的實(shí)用性。用Midas FEA建立空心薄壁墩的全墩模型,分析了日照溫差應(yīng)力和日照引起的橋墩位移,顯示橋墩溫差應(yīng)力和位移都比較大,對橋墩的線形和安全都有較大的威脅,不容忽視。因此在橋梁的設(shè)計、施工以及監(jiān)控中必須考慮日照溫度的影響。
[Abstract]:Hollow thin-walled high pier, as an important substructure of long-span bridge in mountainous area, is placed in the outside environment and affected by solar radiation and atmospheric temperature. However, the inner and outer surface temperature of the structure changes, but the thermal conductivity of concrete is poor. The inner and outer surface temperature of the hollow thin-walled high pier is not consistent, resulting in a larger temperature difference, and then a larger temperature difference stress and displacement. Sometimes excessive thermal stress and displacement will cause cracks or skew of pier body, which will seriously affect the safety and normal operation of the bridge. There are more and more bridge damage accidents caused by sunshine temperature effect, so it is urgent to study the temperature effect of hollow pier in order to prevent and reduce the damage to the structure. In this paper, the temperature distribution and effect of hollow thin-walled high pier of mountain bridge are studied based on engineering examples. The main work and conclusions are as follows: (1) reviewing a large number of domestic and foreign literatures, the temperature forming mechanism of hollow thin-walled high pier, the influencing factors of temperature distribution and the characteristics of several kinds of temperature loads are introduced in detail. This paper introduces the method of calculating temperature field and temperature effect of hollow thin-walled high pier, and the calculation method of heat conduction boundary condition needed for it. It introduces the basic data of background bridge, determines the field measurement scheme, and analyzes the temperature field distribution of high pier. According to the measured data, combined with relevant codes and theories, the exponential temperature gradient curve of high piers was fitted by Mat Lab regression, and the temperature gradient model of hollow thin-walled piers suitable for bridge site was put forward: transverse T _ XD _ (17.82) E ~ (-8.423x) of bridge piers. The longitudinal Tyx 17.61e of piers is 9.428yr. The difference between the fitting formula and the measured data shows that the data are in good agreement with the geographic data and meteorological conditions of the bridge site, and the temperature model of the hollow pier section is established by using the large-scale finite element software Midas FEA. The temperature field of bridge piers is analyzed, and the difference of the calculated results, the measured data and the fitted temperature difference distribution curves is compared. The results show that the three curves are basically consistent, which proves the practicability of finite element software simulation. The model of full pier of hollow thin-walled pier is established by Midas FEA, and the temperature difference stress and the displacement of bridge pier caused by sunshine are analyzed. The results show that the temperature difference stress and displacement of bridge pier are relatively large, which is a great threat to the alignment and safety of bridge pier, and can not be ignored. Therefore, the influence of sunshine temperature must be taken into account in the design, construction and monitoring of bridges.
【學(xué)位授予單位】:長沙理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:U441.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前5條
1 呂文江;李永利;解瑞松;宋彬;;超高薄壁空心高墩的溫度效應(yīng)研究[J];公路交通科技(應(yīng)用技術(shù)版);2014年11期
2 吳關(guān)良;顏東煌;袁明;;混凝土厚壁箱形墩溫度場觀測與數(shù)值模擬[J];長沙理工大學(xué)學(xué)報(自然科學(xué)版);2007年03期
3 顏東煌;陳常松;涂光亞;;混凝土斜拉橋施工控制溫度影響及其現(xiàn)場修正[J];中國公路學(xué)報;2006年04期
4 陳衡治;謝旭;張治成;葉貴如;徐興;;預(yù)應(yīng)力混凝土箱梁橋的溫度場和應(yīng)力場[J];浙江大學(xué)學(xué)報(工學(xué)版);2005年12期
5 劉來君;變分法在橋梁結(jié)構(gòu)溫度應(yīng)力計算中的應(yīng)用[J];中外公路;2004年01期
相關(guān)博士學(xué)位論文 前4條
1 武立群;混凝土箱梁和空心高墩溫度場及溫度效應(yīng)研究[D];重慶大學(xué);2012年
2 彭友松;混凝土橋梁結(jié)構(gòu)日照溫度效應(yīng)理論及應(yīng)用研究[D];西南交通大學(xué);2007年
3 汪劍;大跨預(yù)應(yīng)力混凝土箱梁橋非荷載效應(yīng)及預(yù)應(yīng)力損失研究[D];湖南大學(xué);2006年
4 王毅;預(yù)應(yīng)力混凝土連續(xù)箱梁溫度作用的觀測與分析研究[D];東南大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 陳勇;鐵路空心高墩溫度場及溫度效應(yīng)研究[D];重慶大學(xué);2014年
2 陳泗瑤;混凝土箱梁溫度場與溫度效應(yīng)有限元分析[D];重慶大學(xué);2014年
3 許寶華;大跨連續(xù)剛構(gòu)橋的溫度效應(yīng)分析[D];西南交通大學(xué);2012年
4 周志敏;高速鐵路箱梁橋日照溫度場分布規(guī)律及計算模式研究[D];中南大學(xué);2011年
5 段永燦;薄壁高墩預(yù)應(yīng)力連續(xù)剛構(gòu)橋溫度效應(yīng)研究[D];長安大學(xué);2010年
6 蔡恒;混凝土連續(xù)箱梁橋溫度場及溫度效應(yīng)分析[D];西南交通大學(xué);2009年
7 黃濤;大跨徑鋼筋混凝土箱形梁橋溫度場效應(yīng)研究[D];武漢理工大學(xué);2009年
8 宋勝錄;高墩大跨連續(xù)剛構(gòu)橋溫度效應(yīng)研究[D];湖南大學(xué);2008年
9 資源;預(yù)應(yīng)力混凝土箱梁溫度效應(yīng)研究[D];武漢理工大學(xué);2008年
10 趙亮;混凝土空心墩溫度效應(yīng)有限元分析[D];重慶大學(xué);2007年
,本文編號:1898223
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1898223.html