車聯(lián)網(wǎng)環(huán)境下行車主動服務(wù)需求感知模型及關(guān)鍵算法研究
本文選題:車聯(lián)網(wǎng) + 主動數(shù)據(jù)庫; 參考:《江蘇大學(xué)》2017年碩士論文
【摘要】:隨著我國汽車保有量的持續(xù)增加,有限的道路資源和持續(xù)增長的車輛構(gòu)成了難以調(diào)和的矛盾,交通事故、交通擁堵頻發(fā)。行車服務(wù)系統(tǒng)逐漸出現(xiàn)為車輛提供服務(wù),如客車上使用的G-BOS(客車智慧運(yùn)營系統(tǒng))和貨車上使用的天行健車聯(lián)網(wǎng)服務(wù)系統(tǒng),能夠在一定程度上促進(jìn)駕駛員的安全駕駛及車輛的維修保養(yǎng)。但是,這些行車服務(wù)系統(tǒng)都有著特殊的應(yīng)用對象,如G-BOS可以為客車提供行車服務(wù),天行健能夠?yàn)樨涇囂峁┓⻊?wù),對于其他類型的車輛則不適用。行車主動服務(wù)系統(tǒng)(Driving Active Service System,DASS)就是要通過采集車輛在車聯(lián)網(wǎng)環(huán)境(Internet of Vehicles,IV)下的行駛信息,通過信息融合對行車服務(wù)進(jìn)行有效的自動感知與辨識,為車聯(lián)網(wǎng)環(huán)境下的車輛行駛提供實(shí)時、主動、高效的服務(wù)。論文在傳統(tǒng)的行車服務(wù)系統(tǒng)(Traditional Traffic Service Systems,TTSS)的基礎(chǔ)上,以江蘇省六大人才高峰項(xiàng)目“行車主動服務(wù)系統(tǒng)關(guān)鍵技術(shù)研究(項(xiàng)目編號:DZXX-048)”為依托,對DASS系統(tǒng)需求感知模型及關(guān)鍵算法進(jìn)行了研究。DASS需求感知模型是整個DASS系統(tǒng)最基礎(chǔ)、但同時又是最重要的部分,是DASS系統(tǒng)基礎(chǔ)理論的研究及關(guān)鍵技術(shù)探索。論文的主要研究工作包含以下4部分內(nèi)容:(1)系統(tǒng)闡述了車聯(lián)網(wǎng)與DASS的研究及發(fā)展現(xiàn)狀,重點(diǎn)分析了車聯(lián)網(wǎng)環(huán)境下DASS的可行性、詳細(xì)分析了車聯(lián)網(wǎng)環(huán)境下的DASS行車服務(wù)需求,并對車聯(lián)網(wǎng)環(huán)境下的車輛行駛信息進(jìn)行了系統(tǒng)性分類、對DASS行車服務(wù)進(jìn)行了細(xì)致的劃分。(2)提出了基于主動數(shù)據(jù)庫的DASS需求感知模型,研究了以ECA(事件-條件-動作)模型為基礎(chǔ)的DASS需求感知模型,構(gòu)建了識別交通擁堵的ECA規(guī)則,并建立起一套數(shù)據(jù)庫管理系統(tǒng)的界面。(3)針對上述DASS需求感知模型服務(wù)實(shí)現(xiàn)的過程,分別提出了基于Multiagent的信息融合算法、不需借助于檢測設(shè)備的交通擁堵感知算法,以及DASS服務(wù)類型、服務(wù)能力匹配算法等三類關(guān)鍵算法,并對算法的復(fù)雜度進(jìn)行了分析和實(shí)驗(yàn)驗(yàn)證。(4)自主搭建了基于Prescan-Matlab/simulink軟件和羅技G29的駕駛員硬件在環(huán)DASS仿真平臺,以DASS感知模型提供追尾預(yù)警安全類行車服務(wù)和實(shí)時動態(tài)的路徑規(guī)劃服務(wù)為例,驗(yàn)證了上述模型與關(guān)鍵算法的有效性和優(yōu)越性。
[Abstract]:With the continuous increase of vehicle ownership in China, the limited road resources and the continuous growth of vehicles constitute an irreconcilable contradiction, traffic accidents and traffic congestion occur frequently. Train service systems have emerged to provide services for vehicles, such as the G-BOS (bus Intelligence Operation system) used on passenger cars and the connected service system for skyline vehicles used on trucks. Can promote driver's safe driving and vehicle maintenance to a certain extent. However, these vehicle service systems have special application objects, such as G-BOS can provide driving services for passenger cars, days can provide services for trucks, but not for other types of vehicles. The driving Active Service system (DASS) is to collect the driving information of the vehicle under the environment of the vehicle network, and to realize the effective automatic perception and identification of the driving service through the information fusion. It provides real-time, active and efficient service for vehicle running in networked environment. On the basis of the traditional Traffic Service system TTSS, this paper is based on the research on the key technology of driving active service system (project No.: DZXX-048), which is the six talents peak project in Jiangsu Province. This paper studies the DASS system requirement awareness model and its key algorithms. The Dass requirement perception model is the most basic but also the most important part of the whole DASS system. It is the basic theory research and key technology exploration of the DASS system. The main research work of this paper includes the following four parts: 1) the research and development status of DASS and vehicle networking are described, the feasibility of DASS under the environment of vehicle networking is analyzed, and the requirement of DASS driving service in the networked environment is analyzed in detail. The vehicle driving information in the networked environment is systematically classified, and the DASS driving service is divided into two parts. (2) the DASS requirement perception model based on active database is proposed. Based on the ECA-based event-conditional action model, the DASS requirement awareness model is studied, and the ECA rules to identify traffic congestion are constructed. An interface of a database management system is established. (3) aiming at the process of implementing the above DASS requirement perception model service, the information fusion algorithm based on Multiagent is proposed, and the traffic congestion awareness algorithm without the aid of detection equipment is proposed. And three kinds of key algorithms, such as DASS service type, service ability matching algorithm, etc., and the complexity of the algorithm is analyzed and verified by experiments. (4) the driver hardware in loop DASS simulation platform based on Prescan-Matlab/simulink software and Logitech G29 is built independently. The effectiveness and superiority of the above model and the key algorithms are verified by taking the DASS perception model as an example to provide the rear-end warning safety traffic service and the real-time dynamic path planning service.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U495
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 梁軍;趙振超;陳龍;徐永龍;朱寧;;車聯(lián)網(wǎng)環(huán)境下基于MAS的行車主動服務(wù)模型[J];中國科學(xué):技術(shù)科學(xué);2016年12期
2 賀宏達(dá);劉夢赤;;INMDB中復(fù)合事件監(jiān)測機(jī)制的設(shè)計(jì)與實(shí)現(xiàn)[J];計(jì)算機(jī)應(yīng)用與軟件;2016年10期
3 夏菽蘭;趙力;;基于BP神經(jīng)網(wǎng)絡(luò)的多傳感器信息融合研究[J];計(jì)算機(jī)測量與控制;2015年05期
4 趙娜;袁家斌;徐晗;;智能交通系統(tǒng)綜述[J];計(jì)算機(jī)科學(xué);2014年11期
5 楊放春;王尚廣;李靜林;劉志晗;孫其博;;車聯(lián)網(wǎng)綜述(英文)[J];中國通信;2014年10期
6 楊浩雄;李金丹;張浩;劉淑芹;;基于系統(tǒng)動力學(xué)的城市交通擁堵治理問題研究[J];系統(tǒng)工程理論與實(shí)踐;2014年08期
7 梁軍;沈偉國;蔣焱;李世浩;陳龍;;基于車聯(lián)網(wǎng)信息融合多Agent方法的交通事件檢測[J];長安大學(xué)學(xué)報(自然科學(xué)版);2014年04期
8 伍春;江虹;易克初;;聚類多Agent強(qiáng)化學(xué)習(xí)認(rèn)知無線電資源分配[J];北京郵電大學(xué)學(xué)報;2014年01期
9 梁丁文;袁磊;蔡之華;谷瓊;;基于無跡卡爾曼濾波傳感器信息融合的車輛導(dǎo)航算法[J];計(jì)算機(jī)應(yīng)用;2013年12期
10 胡啟洲;孫煦;;基于多維聯(lián)系數(shù)的城市路網(wǎng)交通擁堵態(tài)勢監(jiān)控模型[J];中國公路學(xué)報;2013年06期
相關(guān)博士學(xué)位論文 前1條
1 梁軍;基于Multi-Agent和駕駛行為的汽車追尾預(yù)警系統(tǒng)關(guān)鍵理論與技術(shù)研究[D];江蘇大學(xué);2015年
相關(guān)碩士學(xué)位論文 前2條
1 樊迪;京哈高速公路全程監(jiān)控系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];北京工業(yè)大學(xué);2013年
2 何巍楠;基于浮動車數(shù)據(jù)的城市常發(fā)性交通擁堵時空分布特征研究[D];北京交通大學(xué);2012年
,本文編號:1892942
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1892942.html