基于黏彈特性的瀝青損傷演化規(guī)律分析
本文選題:瀝青 + 多階段疲勞試驗(yàn)。 參考:《哈爾濱工業(yè)大學(xué)》2017年碩士論文
【摘要】:瀝青損傷演化規(guī)律是指能準(zhǔn)確描述荷載作用下瀝青內(nèi)部結(jié)構(gòu)損傷程度的損傷變量的變化規(guī)律,多年來,研究者們一直密切關(guān)注瀝青損傷演化規(guī)律的研究,且提出了多種損傷演化函數(shù)。但現(xiàn)有的損傷演化函數(shù)在內(nèi)部結(jié)構(gòu)損傷狀態(tài)描述方面難以體現(xiàn)黏彈特性,未剔除觸變性的影響。雖然目前大多數(shù)研究以模量和能量的變化以及一些特殊函數(shù)(如Weibull函數(shù)等)作為損傷演化函數(shù),但結(jié)果并不理想。黏彈本構(gòu)模型作為瀝青核心黏彈特性,從該模型理論角度出發(fā),通過分析以表征內(nèi)部結(jié)構(gòu)損傷狀態(tài)改變的黏彈模型參數(shù)作為損傷變量,從瀝青內(nèi)部微觀結(jié)構(gòu)的變化分析瀝青的損傷的方法,為瀝青損傷演化規(guī)律分析提供新的研究思路。鑒于此,從瀝青的損傷特性入手,首先基于常規(guī)損傷試驗(yàn)測試動、靜載下瀝青損傷特性,分析了不同溫度、不同瀝青下動載下瀝青復(fù)數(shù)模量、相位角、耗散能等動態(tài)黏彈參數(shù)與靜載下瀝青蠕變?nèi)崃俊?yīng)變、黏度等黏彈參數(shù)隨荷載作用次數(shù)/時間的變化規(guī)律。研究表明,瀝青疲勞過程中,瀝青宏觀黏彈參數(shù)復(fù)數(shù)模量、耗散能、累積耗散能隨荷載作用次數(shù)增加均呈現(xiàn)兩階段的變化趨勢,相位角呈現(xiàn)三階段的變化趨勢。在不考慮設(shè)備因素,瀝青蠕變損傷過程中,蠕變?nèi)崃?時間曲線、應(yīng)變-時間曲線、黏度-時間曲線均呈現(xiàn)兩階段的變化趨勢。同時設(shè)計并驗(yàn)證了多階段疲勞試驗(yàn)/多階段蠕變試驗(yàn),為獲取瀝青內(nèi)部結(jié)構(gòu)黏彈模型特征參數(shù)奠定基礎(chǔ)。其次,基于多階段疲勞試驗(yàn)/多階段蠕變試驗(yàn)分析瀝青損傷過程中內(nèi)部結(jié)構(gòu)黏彈參數(shù)主曲線簇?fù)p傷演化規(guī)律,在此基礎(chǔ)上結(jié)合CAM模型進(jìn)行瀝青內(nèi)部結(jié)構(gòu)狀態(tài)隨損傷變化的初步分析。研究發(fā)現(xiàn),荷載作用初期,瀝青內(nèi)部結(jié)構(gòu)黏彈參數(shù)主曲線基本重合,隨著荷載作用時間增加瀝青復(fù)數(shù)模量-頻率主曲線向縱坐標(biāo)軸反方向平行移動,且其間距不斷增大,相位角-頻率主曲線在反方向移動時,后期高頻范圍內(nèi)相位角也不斷降低。復(fù)數(shù)模量-相位角主曲線簇在不斷向縱坐標(biāo)軸反方向移動的同時,且其弧線狀主曲線呈現(xiàn)曲線兩端先縮短后增長的趨勢;弧線狀損耗模量-儲存模量主曲線簇呈現(xiàn)弧度與弧長度不斷縮短的變化趨勢。瀝青疲勞/蠕變損傷過程中,CAM模型參數(shù)G*g、fc、fd、Rd、md基本保持恒定,表征瀝青內(nèi)部結(jié)構(gòu)松弛時間譜寬度的模型參數(shù)R(k,me) 隨荷載作用時間增加均呈現(xiàn)前期基本恒定、后期由快及慢不斷增大的變化趨勢。最后,基于經(jīng)典本構(gòu)模型廣義Kelvin-Voigt模型與分?jǐn)?shù)階導(dǎo)數(shù)模型1S2P1D,分析了多個表征瀝青內(nèi)部結(jié)構(gòu)狀態(tài)的模型特征參數(shù)的變化規(guī)律。基于此,選取對損傷敏感性高的模型參數(shù)作為瀝青損傷變量,并基于瀝青損傷變量闡述了瀝青損傷演化規(guī)律。研究發(fā)現(xiàn),表征瀝青核心黏彈性質(zhì)的CAM模型參數(shù)R值、廣義Kelvin-Voigt模型參數(shù)松弛模量E2、E3、E4模型特征參數(shù)具有明顯的變化規(guī)律,結(jié)合均勻分布的均方差值分析,本研究選取參數(shù)E2+E3/2作為瀝青疲勞/蠕變損傷變量。瀝青疲勞損傷過程中,瀝青松弛模量E2+E3/2呈現(xiàn)兩個明顯的變化階段。第一階段松弛模量E2+E3/2參數(shù)基本保持恒定,這從內(nèi)部結(jié)構(gòu)穩(wěn)定狀態(tài)的角度剔除了疲勞荷載作用前期觸變性的影響;疲勞第二階段松弛模量E2+E3/2參數(shù)基本呈現(xiàn)初期線性減小、后期由快及慢不斷減小的變化趨勢,經(jīng)驗(yàn)證其受界面裂紋擴(kuò)展機(jī)制所影響。瀝青蠕變損傷過程中,瀝青松弛模量E2+E3/2呈現(xiàn)兩個明顯的變化階段。蠕變第一階段松弛模量E2+E3/2緩慢線性下降;蠕變第二階段,松弛模量E2+E3/2參數(shù)呈現(xiàn)迅速線性減小的變化趨勢。論文闡述了瀝青損傷過程中內(nèi)部結(jié)構(gòu)黏彈參數(shù)主曲線簇與表征內(nèi)部結(jié)構(gòu)狀態(tài)模型特征參數(shù)的變化過程,為瀝青損傷演化規(guī)律的提出與力學(xué)性能的預(yù)測提供了理論依據(jù),同時也為其他黏彈性材料損傷演化研究提供一定的參考與依據(jù)。
[Abstract]:The evolution law of asphalt damage refers to the change law of damage variable which can accurately describe the damage degree of asphalt internal structure under load. For many years, researchers have been paying close attention to the research of the evolution law of asphalt damage, and many damage evolution functions have been put forward. But the existing damage evolution function is described in the internal structure damage state. It is difficult to reflect the viscoelastic properties and do not eliminate the effect of thixotropy. Although most of the current studies take the changes of modulus and energy and some special functions (such as Weibull function, etc.) as damage evolution functions, the results are not ideal. The viscoelastic constitutive model, as a core viscoelastic characteristic of asphalt, is analyzed from the theoretical point of view of the model. The parameter of the viscoelastic model that characterizing the change of the internal structure damage state is used as the damage variable, the method of asphalt damage analysis is analyzed from the change of the internal microstructure of the asphalt, which provides a new research idea for the analysis of the asphalt damage evolution law. The dynamic viscoelastic modulus, phase angle, dissipative energy and other dynamic viscoelastic parameters, such as creep flexibility, strain and viscosity under static load, are analyzed. The study shows that the modulus of complex modulus of asphalt macro viscoelastic parameters is dissipated in the process of asphalt fatigue. The cumulative dissipative energy shows a two stage change trend with the increase of load times, and the phase angle presents a trend of change in the three stage. In the process of asphalt creep damage, the creep flexibility time curve, strain time curve and viscosity time curve have two stages of change in the process of asphalt creep damage. The stage fatigue test / multi-stage creep test lays the foundation for obtaining the characteristic parameters of the internal structural viscoelastic model of asphalt. Secondly, based on the multi-stage fatigue test / multi-stage creep test, the damage evolution of the main viscoelastic parameters of the internal structure of the internal structure in the process of asphalt damage is analyzed. On this basis, the internal structure of asphalt is carried out in combination with the CAM model. The initial analysis of the change of state with the damage shows that the main curve of the viscoelastic parameters of the internal structure of asphalt is basically coincided with the loading time. With the increasing of loading time, the main curve of the modulus of asphalt is moving parallel to the reverse direction of the longitudinal axis, and its distance is increasing, and the phase angle frequency main curve moves in the reverse direction, and then the phase angle frequency main curve moves in the reverse direction. The phase angle in the period of high frequency is also decreasing. The complex modulus phase angle principal curve cluster is moving in the reverse direction to the longitudinal axis, and its arc shape main curve shows the trend of shortening and then increasing at both ends of the curve; the arc like loss modulus - the main curve of the storage modulus presents the changing trend of the arc and the arc length. During the process of green fatigue / creep damage, the parameters of CAM model G*g, FC, FD, Rd, MD are basically constant. The model parameter R (k, me) representing the width of the relaxation time spectrum of the internal structure of asphalt, R (k, me), with the increase of load time, is basically constant in the early stage, and in the later period it is constantly increasing from fast and slow. Finally, based on the classical constitutive model generalized Kelvin-Voigt. The model and the fractional derivative model 1S2P1D are used to analyze the variation of the model characteristic parameters which represent the internal structure state of the asphalt. Based on this, the model parameters with high damage sensitivity are selected as the asphalt damage variables, and the asphalt damage modeling is expounded based on the asphalt damage variable. The research shows that the asphalt core viscoelasticity is characterized. The parameter R value of the qualitative CAM model, the parameter relaxation modulus of the generalized Kelvin-Voigt model E2, the E3 and E4 model have obvious change law. Combining the homogeneous distribution of the mean square difference analysis, the parameter E2+E3/2 is selected as the asphalt fatigue / creep damage variable. The asphalt relaxation modulus E2+E3/2 presents two obvious in the process of asphalt fatigue damage. The first phase of the relaxation modulus E2+E3/2 parameter is basically constant, which excludes the effect of the early thixotropy of the fatigue load from the angle of the internal structural stability; the second phase relaxation modulus E2+E3/2 parameter of the fatigue is basically linear decreasing in the initial stage, and the change trend from the fast and slow decreasing in the later period is proved to be subject to the fatigue modulus. In the process of asphalt creep damage, the asphalt relaxation modulus E2+E3/2 presents two obvious changes during the creep damage process. The first stage of the creep modulus E2+E3/2 slows down slowly, the second stage of creep, the E2+E3/2 parameter of the relaxation modulus presents a rapid linear decreasing trend. The paper describes the asphalt damage process. The change process of the internal structural viscoelastic parameter main curve cluster and the characteristic parameter of the internal structure state model provides the theoretical basis for the asphalt damage evolution law and the prediction of the mechanical properties. At the same time, it also provides some reference and basis for the damage evolution of other viscoelastic materials.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U414
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱浩然;孫璐;朱耀庭;;基于熱力學(xué)的瀝青混合料粘彈-粘塑性損傷本構(gòu)模型[J];中國公路學(xué)報;2013年03期
2 曾國偉;楊新華;白凡;尹安毅;;瀝青砂粘彈塑蠕變損傷本構(gòu)模型實(shí)驗(yàn)研究[J];工程力學(xué);2013年04期
3 朱洪洲;嚴(yán)恒;唐伯明;;瀝青混合料疲勞-蠕變交互作用損傷模型[J];中國公路學(xué)報;2011年04期
4 鄭健龍;馬健;呂松濤;錢國平;田小革;;老化瀝青混合料粘彈性疲勞損傷模型研究[J];工程力學(xué);2010年03期
5 詹小麗;張肖寧;王端宜;盧亮;;改性瀝青非線性粘彈性本構(gòu)關(guān)系研究及應(yīng)用[J];工程力學(xué);2009年04期
6 易富;梁冰;薛強(qiáng);;瀝青混凝土內(nèi)時本構(gòu)模型[J];廣西大學(xué)學(xué)報(自然科學(xué)版);2008年04期
7 張肖寧;遲鳳霞;王麗健;史金鋒;;基于CAM模型的瀝青混合料粘彈性能研究(英文)[J];Journal of Southeast University(English Edition);2008年04期
8 遲鳳霞;張肖寧;鄒桂蓮;;基于動態(tài)模量主曲線的瀝青混合料連續(xù)松弛時間譜[J];華南理工大學(xué)學(xué)報(自然科學(xué)版);2008年10期
9 黃曉明;張久鵬;劉偉民;;用粘彈性理論預(yù)測瀝青混合料的劈裂疲勞壽命[J];華南理工大學(xué)學(xué)報(自然科學(xué)版);2008年06期
10 鄭健龍;呂松濤;田小革;;基于蠕變試驗(yàn)的瀝青粘彈性損傷特性[J];工程力學(xué);2008年02期
相關(guān)博士學(xué)位論文 前1條
1 李銳鐸;基于分?jǐn)?shù)階導(dǎo)數(shù)理論的瀝青膠砂及混合料力學(xué)特性研究[D];鄭州大學(xué);2016年
相關(guān)碩士學(xué)位論文 前4條
1 許亞男;基于黏彈特性的瀝青普適本構(gòu)模型研究[D];哈爾濱工業(yè)大學(xué);2016年
2 張紅;應(yīng)力、應(yīng)變控制模式下瀝青疲勞損傷差異機(jī)理分析[D];哈爾濱工業(yè)大學(xué);2014年
3 李瓊;瀝青混合料間接拉伸疲勞損傷特性研究[D];長沙理工大學(xué);2011年
4 欒利強(qiáng);考慮損傷與愈合的瀝青混凝土疲勞性能研究[D];長沙理工大學(xué);2009年
,本文編號:1887672
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1887672.html