主應(yīng)力對圍巖失穩(wěn)破壞行為影響的三維數(shù)值模擬研究
本文選題:巖體力學(xué) + 洞室穩(wěn)定; 參考:《大連理工大學(xué)》2015年碩士論文
【摘要】:近幾十年來,由于國家社會經(jīng)濟(jì)不斷發(fā)展、科技水平不斷提升,我國開發(fā)地下空間的工程項目越來越多,地下空間的安全穩(wěn)定性也越發(fā)成為人們關(guān)心的重要內(nèi)容。特別是地下工程所處的應(yīng)力環(huán)境往往十分復(fù)雜,巖體通常處于三向受力狀態(tài),洞室圍巖表現(xiàn)出了很強的非線性變形破壞特征。簡單的假設(shè)為二維平面問題容易忽視軸向應(yīng)力的作用及中間主應(yīng)力的影響等,當(dāng)涉及到破壞過程時也很難有助于深入地理解所面臨的問題,有必要結(jié)合相關(guān)理論,考慮巖體的物理力學(xué)特性及破壞特征,從應(yīng)力的三維效應(yīng)出發(fā)研究多軸應(yīng)力條件下地下洞室圍巖破裂失穩(wěn)的機(jī)制,為地下空間災(zāi)害監(jiān)測預(yù)報、支護(hù)設(shè)計及安全穩(wěn)定分析與評價等提供可靠依據(jù)。針對復(fù)雜應(yīng)力環(huán)境三向應(yīng)力狀態(tài)下地下洞室圍巖的破壞條件和破裂機(jī)制,首先采用韋伯分布建立能夠描述巖體非均勻性特征的三維地質(zhì)模型,以基于物理統(tǒng)計理論的細(xì)觀損傷力學(xué),考慮應(yīng)力的三維效應(yīng),引入強度折減法,模擬洞室圍巖從初始損傷到最終失穩(wěn)破壞的全過程。在各種類型的三軸物理試驗中,大量的前期工作都用于消除試驗的端部效應(yīng),在數(shù)值模擬中通過引入強度折減法,一方面,在保持模型邊界條件的同時實現(xiàn)洞室圍巖的逐步破壞,獲得圍巖破裂過程和破壞模式,另一方面,可以計算得到的安全系數(shù)定量評價不同應(yīng)力環(huán)境中洞室的安全穩(wěn)定狀況。而后,進(jìn)一步探討在不同的軸向應(yīng)力和側(cè)壓力系數(shù)條件下洞室圍巖的破壞模式與穩(wěn)定狀況,探究中間主應(yīng)力對圍巖破壞規(guī)律及對洞室安全穩(wěn)定的影響。最后,研究了深部地下工程巖體中可能存在的分區(qū)破裂現(xiàn)象形成的條件及破壞的規(guī)律。論文的主要內(nèi)容和成果如下:(1)研究了軸向應(yīng)力分別為最小主應(yīng)力、中間主應(yīng)力、最大主應(yīng)力時地下洞室的破壞規(guī)律以及不同軸向應(yīng)力作用下洞室穩(wěn)定的安全系數(shù)。結(jié)果表明,當(dāng)軸向應(yīng)力較小時,會促使圍巖發(fā)生局部破壞,壓剪破壞和拉伸破壞共同威脅著圍巖的穩(wěn)定;當(dāng)軸向應(yīng)力較大時,圍巖出現(xiàn)間隔破裂的現(xiàn)象,破壞區(qū)在洞周附近分布更加均勻,洞室趨向于整體失穩(wěn)模式。同時,當(dāng)改變側(cè)壓力系數(shù)時,洞室軸向應(yīng)力對安全系數(shù)影響的規(guī)律是不相同的。(2)研究了洞室側(cè)壓力系數(shù)取不同值時圍巖破壞模式及穩(wěn)定狀況。結(jié)果表明,圍巖巖體初始破裂形成的位置和發(fā)展的趨勢受側(cè)壓力系數(shù)影響嚴(yán)重。當(dāng)側(cè)壓力系數(shù)較小時,破裂首先產(chǎn)生在洞室兩壁附近,而后局部破裂帶不斷向圍巖深處發(fā)展,威脅洞室的安全穩(wěn)定;當(dāng)側(cè)壓力系數(shù)較大,偏壓水平不高時,破壞區(qū)在洞室周圍分布更加均勻,但是破裂形式復(fù)雜,總體上呈現(xiàn)出了整體破壞的模式。同時隨著圍巖側(cè)壓力系數(shù)的增加,洞室安全穩(wěn)定性基本上表現(xiàn)出逐步提高的趨勢,但安全系數(shù)提高的快慢因軸向應(yīng)力的不同而存在著明顯差異。(3)探究了不同中間主應(yīng)力作用下洞室圍巖的破壞規(guī)律和安全穩(wěn)定狀況。結(jié)果表明,中間主應(yīng)力對洞室圍巖破壞規(guī)律有著顯著的影響,同時,地下洞室圍巖的安全穩(wěn)定性具有中間主應(yīng)力效應(yīng),不同方向的中間主應(yīng)力影響地下洞室安全狀況的規(guī)律是不同的。當(dāng)軸向應(yīng)力作第二主應(yīng)力時,安全系數(shù)總體呈現(xiàn)出了大小不同的兩個階段;當(dāng)水平應(yīng)力作第二主應(yīng)力時,安全系數(shù)隨其增加而先增加后減小。(4)探討了地下洞室埋深較大時圍巖分區(qū)破裂形成的條件和力學(xué)機(jī)制。當(dāng)洞室軸線方向與最大水平應(yīng)力方向平行時,較大的軸向應(yīng)力會引起洞室徑向較大的張拉作用,促使洞室圍巖產(chǎn)生分區(qū)破裂化現(xiàn)象。同時,分區(qū)破裂化的形成需要滿足適當(dāng)?shù)臈l件,巖體可能并沒有形成完整且典型的分區(qū)破裂現(xiàn)象,而是出現(xiàn)了具有分區(qū)破裂化趨勢的局部破壞。
[Abstract]:In recent decades, because of the continuous development of the national social economy and the continuous improvement of the level of science and technology, there are more and more projects in the development of underground space in China, and the safety and stability of underground space is becoming more and more important. Especially, the stress environment of underground engineering is often very complex, and the rock mass is usually in the form of three direction force. The surrounding rock of the cavern shows a strong nonlinear deformation and failure characteristics. The simple assumption that the two-dimensional plane problem is easy to ignore the effect of the axial stress and the influence of the intermediate principal stress, and so on. When it is involved in the failure process, it is difficult to understand the problems in depth. It is necessary to combine the relevant theories and consider the physical mechanics of the rock mass. From the three-dimensional effect of stress, the mechanism of fracture and instability of surrounding rock in underground caverns under multi axis stress conditions is studied. It provides reliable basis for underground space disaster monitoring and prediction, support design, safety and stability analysis and evaluation, and the failure conditions of underground cavern surrounding rock under the three direction stress state of complex stress environment. The fracture mechanism, firstly, uses Webb distribution to establish a three-dimensional geological model that can describe the heterogeneity of rock mass. Based on the meso damage mechanics based on the theory of physical statistics, the three-dimensional effect of stress is considered, and the strength reduction method is introduced to simulate the whole process of the surrounding rock from initial damage to final instability failure. In various types of three axis physics In the experiment, a large amount of early work is used to eliminate the end effect of the test. In the numerical simulation, the strength reduction method is introduced. On the one hand, the progressive destruction of the surrounding rock is realized while the boundary condition of the model is kept. The fracture process and failure mode of the surrounding rock are obtained, and the other side, the calculation of the quantitative evaluation of the safety coefficient is different. The safety and stability of the caverns in the stress environment. Then, the failure modes and stability conditions of the surrounding rock of the caverns under the conditions of different axial stress and side pressure coefficient are further explored, and the influence of the middle principal stress on the failure law of the surrounding rock and the safety and stability of the caverns is explored. Finally, the possible subareas in the rock mass of the deep underground engineering are studied. The main contents and results of the paper are as follows: (1) the failure laws of the underground caverns and the stability of the caverns under the action of different axial stresses are studied. The results show that the axial stress is less than that of the axial stress. In order to cause local destruction of the surrounding rock, the pressure shear failure and tensile failure threaten the stability of the surrounding rock. When the axial stress is larger, the surrounding rock occurs interval rupture, the distribution of the damaged area is more uniform around the hole and the cavity tends to the overall instability mode. At the same time, when the side pressure coefficient is changed, the axial stress of the cavern is influenced by the safety factor. The law of the noise is different. (2) the failure mode and stability of the surrounding rock are studied. The results show that the position and development trend of the initial fracture of rock mass is seriously affected by the side pressure coefficient. When the side pressure coefficient is small, the fracture first occurs near the two wall of the cave, then the local rupture is then broken. With the continuous development of the surrounding rock, it threatens the safety and stability of the caverns. When the lateral pressure coefficient is large and the horizontal pressure is not high, the distribution of the damaged area is more uniform around the cavern, but the fracture form is complex and the overall failure mode is presented. At the same time, with the increase of the lateral pressure coefficient of the surrounding rock, the safety and stability of the cavern is basically shown. There is a trend of gradual improvement, but the increase of safety factor has obvious differences due to the difference of axial stress. (3) the failure law and safety and stability condition of the surrounding rock in the caverns under different intermediate principal stresses are explored. The results show that the intermediate principal stress has a significant influence on the failure rules of the surrounding rock, and the surrounding rock of the underground cavern. The safety stability has the intermediate principal stress effect, and the law of the underground cavern safety condition is different in different directions. When the axial stress is second main stresses, the safety factor generally presents two stages of different sizes; when the horizontal stress is second main stresses, the safety coefficient increases with it and increases first. (4) the conditions and mechanical mechanism of the subarea fracture of the surrounding rock are discussed. When the axis direction of the cavern is parallel to the maximum horizontal stress direction, the larger axial stress will cause the larger radial tensile action of the cavern, which will cause the fragmentation of the surrounding rock mass. At the same time, the formation of subarea fracture is formed. It is necessary to meet the appropriate conditions. The rock mass may not have formed a complete and typical zonal rupture phenomenon, but a partial failure with the trend of zonal fracturing.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:U451.2;TU91
【共引文獻(xiàn)】
相關(guān)期刊論文 前6條
1 張繼勛,于紀(jì)玉;水工地下工程穩(wěn)定性分析方法現(xiàn)狀與展望[J];紅水河;2005年01期
2 許傳華,任青文,李瑞;地下工程圍巖穩(wěn)定性分析方法研究進(jìn)展[J];金屬礦山;2003年02期
3 劉運生;;實數(shù)編碼的遺傳算法在流變參數(shù)反演中的應(yīng)用[J];山西建筑;2008年36期
4 鄢建華,湯雷,柯敏勇;水工地下工程圍巖穩(wěn)定性分析方法研究進(jìn)展[J];水電站設(shè)計;2004年04期
5 何平;王華寧;;深埋圓形壓力隧洞施工過程的粘彈性解析解[J];力學(xué)季刊;2012年01期
6 張繼勛,劉秋生;地下工程圍巖穩(wěn)定性分析方法現(xiàn)狀與不足[J];水利科技與經(jīng)濟(jì);2005年02期
相關(guān)會議論文 前2條
1 薛琳;王榮;;應(yīng)用邊界元法確定圍巖粘彈性位移的新方法[A];第五屆全國結(jié)構(gòu)工程學(xué)術(shù)會議論文集(第二卷)[C];1996年
2 薛琳;;位移反分析的蠕變?nèi)崃坑邢迒卧╗A];全國巖土工程反分析學(xué)術(shù)研討會暨黃巖石窟(錦繡黃巖)巖石力學(xué)問題討論會文集[C];2006年
相關(guān)博士學(xué)位論文 前10條
1 胡夏嵩;低地應(yīng)力區(qū)地下洞室圍巖穩(wěn)定性研究[D];長安大學(xué);2002年
2 王桂林;巖石洞室地基穩(wěn)定性研究[D];重慶大學(xué);2004年
3 梅松華;層狀巖體開挖變形機(jī)制及破壞機(jī)理研究[D];中國科學(xué)院研究生院(武漢巖土力學(xué)研究所);2008年
4 黃林沖;多孔介質(zhì)隧道圍巖穩(wěn)定性分析的程序研發(fā)與應(yīng)用[D];中南大學(xué);2009年
5 鄧林;泥巴山深埋特長公路隧道重大巖體工程問題研究[D];西南交通大學(xué);2010年
6 賈蓬;基于強度折減法的結(jié)構(gòu)面影響下隧道圍巖破壞機(jī)理數(shù)值試驗研究[D];東北大學(xué);2008年
7 張結(jié)紅;高應(yīng)力軟巖隧道施工過程力學(xué)效應(yīng)規(guī)律及圍巖控制研究[D];長安大學(xué);2012年
8 蘇利軍;深埋軟巖隧洞雙護(hù)盾TBM施工圍巖穩(wěn)定控制理論與技術(shù)[D];武漢大學(xué);2010年
9 倪紹虎;地下工程并行優(yōu)化反演分析方法研究[D];武漢大學(xué);2010年
10 黃龍現(xiàn)(Hwang RyongHyon);節(jié)理巖體巷道圍巖破壞機(jī)理及數(shù)值模擬研究[D];東北大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 張功;基于強度折減法的隧洞群穩(wěn)定性分析[D];南昌大學(xué);2010年
2 賈偉;佛嶺隧道破碎帶圍巖蠕變變形規(guī)律研究[D];北京交通大學(xué);2011年
3 堯軍;采動影響下巷道群穩(wěn)定性研究[D];河南理工大學(xué);2008年
4 陳思陽;大斷面黃土隧道穩(wěn)定性分析[D];蘭州理工大學(xué);2011年
5 蘭富安;銅鑼山隧道豎井淺埋段信息化施工技術(shù)研究[D];西南交通大學(xué);2011年
6 郭艷;瑪河一級電站引水隧洞圍巖穩(wěn)定及襯砌結(jié)構(gòu)分析研究[D];石河子大學(xué);2011年
7 王星;城市地下隧道施工對鄰近建筑物的影響及控制研究[D];湖南大學(xué);2009年
8 于振振;基于監(jiān)控量測與數(shù)值模擬的隧道圍巖穩(wěn)定性分析[D];西安建筑科技大學(xué);2011年
9 石熊;VI級圍巖淺埋大跨度偏壓隧道穩(wěn)定性研究[D];湖南科技大學(xué);2011年
10 楊緒祥;基于能量釋放率的地下工程穩(wěn)定性研究[D];昆明理工大學(xué);2011年
,本文編號:1886569
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1886569.html