短時事故擾動下的逐日路網(wǎng)流量演化模型
發(fā)布時間:2018-05-13 21:20
本文選題:城市交通 + 日變路網(wǎng); 參考:《交通運(yùn)輸系統(tǒng)工程與信息》2017年02期
【摘要】:為研究事故擾動下日變交通路網(wǎng)流量在出發(fā)時刻和選擇路徑上的時空演變規(guī)律,以出行經(jīng)驗(yàn)學(xué)習(xí)更新路網(wǎng)理解阻抗,基于準(zhǔn)點(diǎn)到達(dá)概率最大和到達(dá)前景最大分別調(diào)整計(jì)劃出發(fā)時刻和出行路徑.并在出行當(dāng)日根據(jù)出發(fā)前各時段的實(shí)時信息再次更新路網(wǎng)阻抗,重新調(diào)整出發(fā)時刻和路徑獲得實(shí)際出行選擇.從而建立考慮出行日信息更新的逐日路網(wǎng)流量演化模型.采用算例驗(yàn)證模型,結(jié)果表明:在路網(wǎng)無事故情形下,考慮出行日內(nèi)調(diào)整,路網(wǎng)流量變化震蕩緩和,但達(dá)到穩(wěn)定所需時間長;事故發(fā)生在穩(wěn)定前,會影響最終平衡態(tài)流量分布,而事故發(fā)生在穩(wěn)定后,則不影響;考慮出行日調(diào)整會加大路網(wǎng)在事故發(fā)生后幾日的流量震蕩.
[Abstract]:In order to study the temporal and spatial evolution of daily traffic network flow at departure time and choice path under accident disturbance, we can update the network understanding impedance by trip experience learning. Based on the maximum arrival probability and the maximum arrival prospect, the planning departure time and the travel path are adjusted respectively. According to the real-time information of each time before departure, the road network impedance is updated again on the travel day, and the departure time and path are readjusted to obtain the actual travel choice. Thus, a daily network flow evolution model considering daily information update is established. An example is used to verify the model. The results show that in the case of no-accident, considering the in-day adjustment of the road network, the fluctuation of the road network flow changes moderates, but it takes a long time to achieve stability, and the accident occurs before the stability, which will affect the final equilibrium flow distribution. But the accident occurs after the stabilization, then does not affect; the consideration travel day adjustment will increase the road network several days after the accident flow turbulence.
【作者單位】: 浙江大學(xué)建筑工程學(xué)院;武漢科技大學(xué)汽車與交通工程學(xué)院;
【基金】:國家自然科學(xué)基金(51308425) 中國博士后科學(xué)基金(2014M561762)~~
【分類號】:U491
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 于振江;傅凝;羅批;張斌;;戰(zhàn)爭危機(jī)下經(jīng)濟(jì)演化模型的經(jīng)濟(jì)信心建模研究[J];系統(tǒng)仿真學(xué)報(bào);2006年12期
2 李淼泉,杜志孝,吳詩`,
本文編號:1884854
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1884854.html
教材專著