雙層公路鋼桁梁橋車橋耦合振動研究
本文選題:橋梁工程 + 雙層公路鋼桁梁橋; 參考:《長安大學(xué)》2015年博士論文
【摘要】:隨著中國經(jīng)濟的增長與社會的發(fā)展,對交通基礎(chǔ)設(shè)施建設(shè)的需求快速增加,與此同時,公路橋梁建設(shè)所受的限制條件也日趨多樣化與復(fù)雜化,為此大量新型結(jié)構(gòu)形式、新技術(shù)不斷涌現(xiàn)。雙層鋼桁梁橋占地面積小,可以充分發(fā)揮橋位之利,通行能力大,能有效地緩解日益增長的交通壓力,將會逐漸成為中國公路鋼橋的一種發(fā)展方向與趨勢。雙層鋼橋在力學(xué)行為上表現(xiàn)為空間性強,受力復(fù)雜,而且由于車道多,車流的隨機性強,使得橋梁上下層各桿件的動力響應(yīng)極為復(fù)雜,動力耦合效應(yīng)也更為明顯。在長期運營后,由于橋面平整度持續(xù)變差,車輛自身振動越加劇烈,將會使橋梁結(jié)構(gòu)產(chǎn)生更大的動力響應(yīng),橋梁結(jié)構(gòu)的安全性及使用壽命都將面臨更為嚴(yán)峻地挑戰(zhàn),已成為橋梁設(shè)計與運營階段必須加以考慮與解決的問題。本文在高等學(xué)校博士學(xué)科點專項科研基金項目——隨機車流作用下雙層公路鋼桁橋車-橋耦合效應(yīng)研究(20090205110002)的資助下,對雙層公路鋼桁梁橋的車橋耦合振動問題進行了研究,主要研究內(nèi)容、研究方法與研究成果如下:(1)闡述了車橋耦合振動問題的產(chǎn)生、古典研究方法理論、發(fā)展以及國內(nèi)外研究現(xiàn)狀,在分析總結(jié)現(xiàn)有車橋耦合研究成果的基礎(chǔ)上,根據(jù)車橋耦合振動問題的特點,制定了本文的研究方法與技術(shù)路線。(2)針對現(xiàn)有公路橋梁車橋耦合振動響應(yīng)問題分析的復(fù)雜性,結(jié)合分離法原理與車輛動力學(xué)理論,提出了一種基于ANSYS平臺的公路橋梁車橋耦合振動響應(yīng)數(shù)值分析方法。將車輛模型與橋梁模型分別獨立建于ANSYS軟件環(huán)境中,利用約束方程實現(xiàn)任意時刻車輪與橋面接觸點的位移協(xié)調(diào)關(guān)系(力的平衡關(guān)系由程序自動滿足),基于ANSYS瞬態(tài)動力學(xué)求解功能,采用APDL編程實現(xiàn)車輛(車流)過橋的耦合動力時程響應(yīng)分析。通過與相關(guān)文獻算例結(jié)果的對比及實橋動載試驗驗證了本文方法的正確性與可靠性。該方法在任意載荷步處不需要迭代計算,避免了復(fù)雜程序設(shè)計,極大地提高了分析效率。(3)基于本文提出的車橋耦合振動數(shù)值算法,采用UIDL與APDL語言聯(lián)合編程,依托ANSYS軟件環(huán)境開發(fā)了公路橋梁車橋耦合振動響應(yīng)分析模塊VBCVA。該模塊只需輸入橋梁模型(橋面可以采用板單元或梁單元模擬)、車道信息(車道中心起始位置、車道方向等參數(shù))與車輛(車流)信息(車輛類型、所屬車道、車重及懸架剛度與阻尼等參數(shù)),即可計算出任意結(jié)構(gòu)體系橋梁各位置的撓度沖擊系數(shù)及其時程響應(yīng)與各桿件的軸力、彎矩、扭矩等內(nèi)力沖擊系數(shù)及其時程變化響應(yīng)。該模塊采用圖形用戶界面(GUI)方式接受用戶的輸入,操作簡便直觀,便于工程人員掌握與應(yīng)用。(4)以國內(nèi)首座雙層公路鋼桁梁橋(三桁剛性懸索加勁鋼桁梁橋)——東江大橋為工程背景,利用大型通用有限元軟件ANSYS,采用空間梁單元Beam188(主桁桿件、縱梁和橫梁)與板單元Shell63(橋面板)建立其三維有限元模型,對其動力特性(自振頻率與振型)進行計算。對比實橋動載試驗測試結(jié)果與有限元分析結(jié)果,兩者相差較小,從而驗證了有限元模型的可靠性,同時表明所建立的有限元模型能較好地反映實際橋梁的動力特性,有限元建模過程中的單元選取、邊界施加和相關(guān)假定與實際較為相符,可應(yīng)用其進行類似雙層鋼橋的有限元建模與計算分析工作,為進一步開展雙層橋車橋耦合振動分析研究提供了有限元模型基準(zhǔn)。(5)以東江大橋為工程依托,設(shè)計了一雙層公路簡支鋼桁梁橋,應(yīng)用已開發(fā)的車橋耦合振動分析模塊VBCVA,對其車橋耦合振動響應(yīng)進行了分析計算,系統(tǒng)地研究了單雙層加載模式、車輛數(shù)量、車輛速度、車輛質(zhì)量、橋面不平度等級與橋梁阻尼比等參數(shù)獨立變化時,橋梁主梁各控制位置處桿件內(nèi)力與節(jié)點撓度時程變化動力響應(yīng)與沖擊系數(shù)變化規(guī)律,為雙層橋的設(shè)計提供一定的參考與借鑒。
[Abstract]:With the growth of China's economy and the development of the society, the demand for the construction of traffic infrastructure is increasing rapidly. At the same time, the restrictive conditions for the construction of road and bridge are becoming more and more diverse and complicated. Therefore, a large number of new structure forms and new technologies are constantly emerging. The floor area of the double deck steel truss bridge is small, and the bridge position can be fully exploited. Large capacity, can effectively alleviate the increasing traffic pressure, will gradually become a development direction and trend of the highway steel bridge in China. The double deck steel bridge has strong spatial characteristics and complex force in mechanical behavior, and because of the many lanes and the strong randomness of the traffic, the dynamic response of the members of the bridge and the lower part of the bridge is very complex and dynamic. The coupling effect is also more obvious. After the long operation, the bridge surface roughness continues to become worse and the vehicle itself vibrate more and more violently, which will make the bridge structure more dynamic response. The safety and service life of the bridge structure will face more severe challenges, which must be considered and solved in the design and operation stage of the bridge. In this paper, under the support of the study of the coupling effect of the double highway steel truss bridge with the coupling effect of the steel truss bridge (20090205110002) under the support of the study on the coupling effect of the double highway steel truss bridge under the action of random traffic, this paper studies the problem of the bridge coupling vibration of the double deck highway steel truss bridge. The main research methods and research results are as follows: (1) The generation of the bridge coupling vibration problem, the classical research method theory, the development and the current research status at home and abroad are expounded. Based on the analysis and summary of the existing research results of the existing vehicle bridge coupling, the research method and technical route of this paper are formulated according to the characteristics of the bridge coupling vibration. (2) the coupling vibration response of the existing highway bridges and bridges. The complexity of the problem analysis is combined with the principle of separation method and the theory of vehicle dynamics. A numerical analysis method for the coupling vibration response of highway bridge vehicle bridge based on ANSYS platform is proposed. The vehicle model and bridge model are independently built in the ANSYS software environment, and the displacement of the contact points of the wheel and the bridge surface at any time is realized by the constraint equations. The coordination relation (the balance relation of force is automatically satisfied by the program), based on the ANSYS transient dynamic solving function, the coupling dynamic time history response analysis of the vehicle (Che Liu) crossing bridge is realized by APDL programming. The correctness and reliability of the method are verified by the comparison of the related literature results and the real bridge dynamic load test. The load step does not need iterative calculation, avoids the complex program design and greatly improves the efficiency of analysis. (3) based on the proposed numerical algorithm of vehicle bridge coupling vibration, the combined programming of UIDL and APDL language and the ANSYS software environment are used to develop the coupling vibration response analysis module of highway bridge vehicle bridge VBCVA., which only needs to input the bridge beam model. Type (bridge deck can be simulated by plate element or beam element), lane information (Lane Center starting position, lane direction and other parameters) and vehicle (Che Liu) information (vehicle type, lane, vehicle weight and suspension stiffness and damping) can be calculated for the deflection impact coefficient, time history response and each pole of any structure of the bridge. The axial force, bending moment, torque and other internal force impact coefficient and its time history change response. The module adopts the graphical user interface (GUI) to accept the user's input, the operation is simple and intuitive, and it is convenient for engineers to master and apply. (4) the Dongjiang Bridge is the first double deck highway steel truss bridge (three truss rigid suspension cable stiffened steel truss bridge). Background, using the large general finite element software ANSYS, the three-dimensional finite element model of the space beam element Beam188 (main truss member, longitudinal beam and beam) and the plate element Shell63 (bridge panel) is established, and the dynamic characteristics of the bridge are calculated. The comparison between the test results of the dynamic load test and the finite element analysis of the real bridge is small, As a result, the reliability of the finite element model is verified. At the same time, it is shown that the finite element model can better reflect the dynamic characteristics of the actual bridge, the element selection in the finite element modeling process, the boundary application and the relevant assumptions are more consistent with the reality, and can be applied to the finite element modeling and calculation analysis of the similar double deck steel bridge. One step is to provide the finite element model reference for the study of the coupled vibration analysis of the double deck bridge. (5) based on the Dongjiang Bridge, a double deck highway simply supported steel truss bridge is designed. The coupled vibration response of the vehicle bridge coupled with the developed vehicle bridge coupling vibration analysis module VBCVA is applied to the analysis and calculation of the coupling vibration response of the bridge, and the single and double loading is systematically studied. When the model, vehicle number, vehicle speed, vehicle quality, bridge deck unevenness grade and Bridge damping ratio change independently, the dynamic response and impact coefficient change law of the internal force and the node deflection time range change at the control position of the bridge main beam are provided for a certain reference and reference for the design of the double deck bridge.
【學(xué)位授予單位】:長安大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:U441.3
【參考文獻】
相關(guān)期刊論文 前10條
1 閻貴平,夏禾,,陳英俊;列車與剛梁柔拱組合系橋系統(tǒng)的地震響應(yīng)分析[J];北方交通大學(xué)學(xué)報;1994年01期
2 劉獻棟,鄧志黨,高峰;公路路面不平度的數(shù)值模擬方法研究[J];北京航空航天大學(xué)學(xué)報;2003年09期
3 林梅,肖盛燮;橋梁車輛振動分析理論評述[J];重慶交通學(xué)院學(xué)報;1998年03期
4 張鶴;張治成;謝旭;龔仁明;;月牙形多拱肋鋼管混凝土桁架拱橋動力沖擊系數(shù)研究[J];工程力學(xué);2008年07期
5 張士鐸;;活載沖擊系數(shù)還是動力系數(shù)[J];公路;1992年02期
6 施穎;田清勇;宋一凡;周新平;;基于ANSYS的公路橋梁車橋耦合振動響應(yīng)數(shù)值分析方法[J];公路;2010年03期
7 郝超,強士中,馬棟君;移動荷載作用下橋梁的振動控制[J];國外橋梁;1999年03期
8 劉永健;劉世忠;張俊光;鄧淑飛;張國璽;;三桁鋼桁梁橋橫橋向內(nèi)力調(diào)整方法及影響參數(shù)[J];廣西大學(xué)學(xué)報(自然科學(xué)版);2011年01期
9 李小珍,強士中,沈銳利;高速列車-大跨度鋼斜拉橋空間耦合振動響應(yīng)研究[J];橋梁建設(shè);1998年04期
10 高巖,張煅;高速鐵路中小跨度橋梁豎、橫向剛度限值及合理分布的研究[J];鐵道建筑技術(shù);2000年04期
相關(guān)博士學(xué)位論文 前3條
1 楊建榮;車—橋耦合作用下公路橋梁局部振動研究[D];同濟大學(xué);2008年
2 劉劍;新型組合鋼桁橋可靠性分析及極限承載力評估[D];長安大學(xué);2010年
3 蔣培文;公路大跨徑連續(xù)體系橋梁車橋耦合振動研究[D];長安大學(xué);2012年
相關(guān)碩士學(xué)位論文 前4條
1 米靜;車橋耦合振動對雙層鋼桁橋的沖擊作用研究[D];長安大學(xué);2011年
2 孫韋;車輛荷載作用下連續(xù)梁橋的動態(tài)響應(yīng)研究[D];長安大學(xué);2009年
3 蔣樹勤;雙層公路鋼桁梁橋極限承載力有限元分析[D];長安大學(xué);2010年
4 王森;高速鐵路簡支梁橋車橋耦合振動仿真分析[D];石家莊鐵道大學(xué);2014年
本文編號:1882482
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1882482.html